Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Div
classusa-grid
Div
classusa-width-two-thirds

In the early 1970s, Thressa's direction of research was suddenly changed by the unexpected, serendipitous observation that selenium was required for synthesis of a particular protein. At that time, Thressa was examining the biochemical properties of glycine reductase, the enzyme that catalyzes the reductive degradation of glycine, by isolating and purifying its protein components separately. With this study, she sought to explain a seemingly casual, but puzzling, finding in her laboratory: why did some batches of C. sticklandii, grown under conditions deemed to be optimal for the production of glycine reductase, exhibit virtually no ability to reduce glycine to acetate? 

Div
classusa-width-one-third

Diagram illustrates the function of glycine reductaseImage Removed
This diagram illustrates the function of glycine reductase, the enzyme that attracted Thressa's attention in 1972

In every such instance, the lack of enzymatic activity could be attributed to the absence of one component, called protein A, in the preparation. Finding that this protein component was not continuously produced during the entire phase of growing the bacteria, Thressa began to search for nutrient factors that might help or inhibit the production of protein A. After testing various inorganic minerals, she discovered that the addition of selenium to the bacterial culture medium greatly increased the production of protein A and immediately restored the activity of glycine reductase to its highest level. To determine further whether selenium was an actual component of protein A, Thressa conducted an experiment in which she grew C. sticklandii in a culture medium containing radioactive selenium. This resulted in the incorporation of radioactivity in protein A. By the end of June 1972, Thressa finally had enough evidence to announce the existence of a selenium-containing protein. Protein A of glycine reductase was a selenoprotein!

Div
classusa-width-one-third

Diagram illustrates the function of glycine reductaseImage Added
This diagram illustrates the function of glycine reductase, the enzyme that attracted Thressa's attention in 1972

Selenium was a chemical element discovered in 1817 by the Swedish scientist Jöns Jacob Berzelius (1779-1848). This mineral, existing only in trace amounts in nature, did not receive much attention until the 1930s, when it was identified as a potent toxic substance that was dangerous for cattle and other livestock. While selenium was largely known for its toxic effects, some research articles in the 1950s reported contradictory findings. For example, they showed that dietary intake of selenium helped prevent liver necrosis in rats, protected chickens from exudative diathesis, and prevented a type of muscular dystrophy known as white muscle disease, which was particularly lethal in young animals. These nutritional studies in animals were in fact preceded by an earlier report in 1954 that the activity of formate dehydrogenase, an enzyme produced by bacteria, depended on the addition of selenium to the growth medium. Despite its significance, this finding received little attention at that time.

...