Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Reverted from v. 13

...

Scientists used the RTPP as finally constructed to analyze data in a variety of biomedical domains including optical microscope images of optical serial sections of brain tissue, stained bone marrow smears, and tissue cultures using phase contrast and differential interference optics. The latter was used in tracking cell membrane extents of macrophages in tissue culture over time as the cells tried to phagocytize various types of asbestos fibers. The goal was to better understand fiber carcinogenicity and the dynamics of fiber ingestion [8910]. The bone marrow smear image analysis was part of my Ph.D. dissertation [1112TR-653TR-655]. The RTPP was also used for 2D electrophoretic gel images for a variety of biological materials [1314151617181920212223242526272829303132], and for RNA electron micrographs of secondary structure, which was part of Bruce Shapiro's Ph.D. dissertation [333435363738TR-BAS78].


Div
classusa-grid
Div
classusa-width-one-third

Lewis Lipkin, leader of the projectImage Modified
Dr. Lewis Lipkin

Div
classusa-width-two-thirds

Figure 1. Dr. Lewis Lipkin headed the project. His group started working on computer-controlled optical microscopy in the Perinatal Research Branch (PRB) of NINDB. The group later changed its name and institutes to the Image Processing Unit (IPU) in NCI in the Laboratory of Pathology. IPU later became the Image Processing Section (IPS) in NCI. The Section later became part of the Laboratory of Mathematical Biology (LMMB) in NCI under Dr. Charles DeLisi, Ph.D., and still later under Dr. Jacob Maizel, Ph.D.. The laboratory changed its name to the Laboratory of Experimental and Computational Biology (LECB) under Jake Maizel. The laboratory is currently refocused on nanobiology and is now called the Center for Computer Research Nanobiology Program (CCRNP) directed by Dr. Robert Blumenthal, Ph.D.(CCRNP has an additional research Web site).


2. The Real Time Picture Processor Development Team

...

  • Lewis Lipkin: optical microscopy of serial brain sections and macrophage motility measurements with asbestos
  • Peter Lemkin: bone marrow smear analysis, 2D gel electrophoresis
  • Bruce Shapiro: RNA secondary structure of electron micrographs
  • Carl Merril: NIMH/NIH - 2-dimensional (2D) gel electrophoresis, E.coli mutants and macrophages with asbestos
  • Jacob Maizel: NICHD/NIH, with Bruce Shapiro - RNA electron microscopy of secondary structure
  • Eric Lester: NCI, U. Chicago, and oncology practice - 2D gel electrophoresis on human leukemias
  • Steve Aley and Russell Howard: NIAID/NIH - 2D gel electrophoresis of Plasmodium knowlesi clones
  • Peter Wirth and Snorri Thorgeirsson: NCI/NIH - 2D gel electrophoresis on liver cell lines
  • Peter Sonderegger: NICHD/NIH and U. Zurich - 2D gel electrophoresis of axonal proteins of sensory and motor neurons

...

The 'mcrew' picture taken when RTPP was first runningImage Added

...

Figure

...

2. One of the first images taken using the RTPP was of the development group just after we got the Digital Equipment Corporation DECsystem-2020 interface to the RTPP buffer memory working. The image was one we called "mcrew" (i.e., 'machine crew'). Top row (L-R): Dan Kilgore, George Carman, and Morton Schultz. Bottom row (L-R): Earl Smith and Peter Lemkin. Not shown: Bruce Shapiro and Lew Lipkin who were integral parts of the RTPP design and development team.

The DECsystem-2020 computerImage Added

...

Figure 3. The Digital Equipment Corporation DECsystem-2020 exit disclaimerImage Modified running the TOPS-10 exit disclaimerImage Modified operating system. The system is shown with Bruce Shapiro, holding a removable 180MB "bathtub" size disk pack (on the left), and Peter Lemkin (on the right). It had 512K words, 36-bits/word, 256K word virtual space/user, a very powerful instruction set, and many high-level computer languages, including SAIL (Stanford Artificial Intelligence Language - see wikipedia.org entry on SAILexit disclaimerImage Modified, that made implementing complex analysis algorithms much easier than on the PDP8e. SAIL was developed by Dan Swinehart and Bob Sproull of the Stanford AI Lab exit disclaimerImage Modified in 1970. Sproull was at Division of Computer Research and Technology (DCRT) in the early 1970s and introduced the language to DCRT [the precursor of NIH's Center for Information Technology (CIT)]. Over time, we implemented more of the advanced image processing and pattern recognition algorithms in SAIL, using the RTPP as a sophisticated data acquisition and interactive graphics front-end. Later many of these algorithms were rewritten in C and UNIX using X-windows (we rewrote the C/UNIX/X-windows GELLAB-II exit disclaimerImage Modified exploratory analysis system from the SAIL/TOPS-10/RTPP GELLAB-I), and in LISP (StructureLab with a Symbolics Lisp machine and later a Unix Platform) when the DECsystem-10/20 computer lines were phased out in favor of the VAX exit disclaimerImage Modifiedcomputer lines. Later still, much of the C code for GELLAB-II was converted and rewritten in Java and used as part of the Open2Dprot exit disclaimerImage Modified project. We will discuss some of these projects later under the section Applications of the RTPP in Biomedical Research.

3. The NCI Autoradiograph Grain Counter: Precursor of the RTPP

...