Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Dr. Alice C. Evans Memoir 1963

Download the PDF: Evans_Alice_Memoir_1963  (PDF, 2.91 MB)Download the Word document: Evans, Alice MEMOIRS retyped 2020.docx (DOC, 101 KB)

Download the PDF: Evans, Alice MEMOIRS retyped 2020.pdf (PDF, 374 KB)

Original PDF: Evans_Alice_Memoir_1963  (PDF, 2.91 MB)

...

MEMOIRS

Alice C. Evans

Contents

Table of Contents

...

Until my academic education was completed, I seemed never to have an opportunity to make a choice in matters concerning my future. I always stepped into the only suitable opening I could see on my horizon. Emerson described this kind of progression: "Each man has his own vocation … there is one direction in which all space is open to him. He has faculties silently inviting him thither to endless exertion. He is like a ship in a river; he runs against obstructions on every side but one, on that side every obstruction is taken away and he sweeps over a deepening channel into an infinite sea.”  I    always thought that somehow, I drifted into the work for which I was best adapted.

                I grew up on farm in a Welsh community of northern Pennsylvania where my paternal grandparents settled when they came from Wales in 1831. I received my primary education in the little country schoolhouse where we had good teachers most of the time. Since there was no high school in our rural district, I went to Towanda, the county-seat, to obtain secondary education in one of those private schools called institute or academy that passed out of existence around the turn of the century as high schools multiplied. My class of seven was the last to graduate from the Susquehanna Collegiate Institute. Dreams of going to college were shattered by lack of means.

...

At that time the Dairy Division of the Bureau of Animal Industry (now the Bureau of Dairy Industry), U. S. Department of Agriculture,  was expanding its research personnel, although laboratory space in Washington was limited until the east wing of the building occupied by the Department of Agriculture (the white marble structure north of Independence Avenue between 12th and 14th Streets, N.W.) should be completed. Until laboratory space should become available, research was conducted on a cooperative basis in collaboration with several state experiment stations. The Dairy Division paid the salary of the investigators and the state provided laboratory facilities and direction of the investigations. The federal civil service scientist was selected by the professor who was in charge of the project. At the University of Wisconsin, the departments of chemistry and bacteriology were together collaborating with the Dairy Division on investigations into better methods of cheesemakingcheese-making, an important industry of Wisconsin.

...

Although several women scientists were employed in the Bureau of Plant Industry, U. S. D. A., only one had preceded me in the Bureau of Animal Industry. She remained only a year or two, in the Division of Pathology, and left before I came. I wonder how she happed happened to be admitted. In my case, admission was by accident, for the B. A. I. officials had failed inadvertently to protect themselves against the admittance of women. They had left a loophole in the barrier, and I had entered through it unwittingly. When the arrangement was made for the professor in charge of a cooperative investigation to select the U.S. civil service employee, the thought had not occurred to them that a woman might be chosen. It was an important matter, for a U. S. civil service employee may not be discharged unless a serious complaint be made against her. According to hearsay, when the bad news broke at a meeting of B.A.I. officials that a woman scientist would be coming to join their staff, they were filled with consternation. In the words of a stenographer who was present, "they almost fell off their chairs.”

...

The bacteriological investigations in progress when I entered the Dairy Division included a search for the sources from which bacteria entered dairy products, and this led to a study of techniques by which strains of bacteria cou1d could be identified.

One line of investigation was concerned with finding a method for the identification of bacteria of the coli-aerogenes group. In determining the sanitary quality of both water and milk, it was a matter of great importance to know the origin of bacteria of these types, because the presence of bacteria of the coli type serves as indicator of potentially dangerous contamination, whereas bacteria of the aerogenes type are widely distributed in nature. These studies required the collaboration of a chemist and a bacteriologist. Dr. William Mansfield Clark was the chemist throughout the studies which were reported in a series of four papers by Rogers, Clark, and the bacteriologist as junior author. My first assignment was to do the bacteriological work on the second and third phases of the investigation.

...

healthy goats carried the germs of human undulant fever. This fact gave me an idea which added to my zeal for the study of brucellae.

 Insofar Insofar as I know, only one person in the world ever claimed that he had thought of a possible relationship between the causal organisms of human undulant fever and bovine contagious abortion. This claim was made by a German, who stated that his work was interrupted by World War I, which prevented the publication of his findings. Shannon, a fictitious character in A.J. Cronin's novel Shannon’s Way (1948), studied this problem successfully, and was ready to publish his results, when a friend told him that an American woman had recently published the facts that he had labored so hard to discover. The news crushed him, as was befitting in a novel.

...

In transferring from the Dairy Division, I had to resign from the position of Dairy Bacteriologist. A letter from Mr. Rawl, Chief of the Dairy Division, enclosed a resignation blank which I was asked to fill out and return. I still cherish the final sentence of his letter: "I am asking you to do this with the understanding that when you are ready to return to this division, we shall ask for your transfer." I never requested the return transfer because my interest in brucellae shifted from the causal organism to the disease itself. The Hygienic Laboratory was the place to study brucellosis.

Chapter V

Early Years at the Hygienic Laboratory

On inquiry at the Hygienic Laboratory whether my services might be useful there in work connected with the war, I learned that a position in bacteriology was open. I applied for it and was accepted. The work was with a team of doctors who were working on the improvement of the antiserum used in the treatment of epidemic meningitis, one of the dread diseases of World War I, with a fatality rate of more than 50 percent in some outbreaks.

...

Virchow had taught that human and bovine tubercu1osis tuberculosis were distinct diseases, but in the classical account of his research on the tubercle bacillus (1882) Koch was emphatic in his opinion that there was only one type of the organism which infected man, cattle, and other domestic animals. This opinion was accepted generally by pathologists, veterinarians, and health authorities, but it was contested by a few investigators.

...

Before public health authorities became worried about the transmission of bovine tuberculosis to human beings, the dairy industry was deeply concerned about the great economic losses caused by this disease in cattle. Testing with tuberculin which detected the infection even in its incipient stage, began in 1892. In 1910 a systematic search for all diseased cattle was undertaken in the District of Columbia, and from this beginning grew the concerted effort to test all herds in the country. The campaign of testing, and of slaughtering reactors with compensation to the owner continued for many years. It was "sometimes carried out under actual fire by owners"'(2) who cou1d could not understand the necessity of slaughtering an animal that appeared healthy but reacted to the test. Finally, tuberculosis of cattle was essentially eradicated from the country.

...

If the requirements for the production of safe milk appear to be lax, it should be recalled that much pertinent knowledge has been gained during the last half-century. The first tightening of the rules was made in 1917, when the Commission adopted a resolution that all milk should be pasteurized for the protection of the health of troops against diseases commonly carried by milk.

Chapter VII

Brucellar Repercussions

The campaign against bovine tuberculosis had advanced successfully to its final stage, and assurance of the safety of certified milk was generally accepted when a new problem arose to perplex the dairy industry.

...

Dr. Smith's record approached that of Dr. Welch in brilliancy. He began his career in 1884 as director of the laboratory of pathology of the Bureau of Animal Industry, U. S. D. A. Later was professor of comparative pathology at Harvard Medical School. In 1915 he became director of the Department of Animal Pathology, Rockefeller Institute for Medical Research. Most medical historians agree that his most outstanding achievement was accomplished in the B. A. I. when he found that Texas cattle fever was transmitted by infected ticks. It was one of the first demonstrations of insects as carriers of disease germs. Dr. Smith made notable contributions to the understanding of other diseases, particularly tuberculosis. In the words of Zinsser (3) Dr. Welch and Dr. Smith were “the two greatest individual influences that helped to hold the younger men working in the medical laboratories steadfast in the faith of the worthiness of honest effort."

...

With the gradual decline of milk-borne brucellosis the human disease is becoming more and more occupational, occurring chiefly in farmers, veterinarians, and workers in slaughterhouses, meat-packing plants, and in other occupations necessitating contact with infected animals, their carcasses or tissues. As the percentage of human cases of infection with Br. abortus declines the percentage of cases infected with Br. suis increases, and the disease in swine is of growing concern. In 1961 the U. S. Department of Agriculture began what will become a nationwide program of eradication of porcine brucellosis, in cooperation with the states.

Chapter VIII

...

Studies on Brucellosis at the Hygienic Laboratory

During the summer of 1922 an outbreak of disease occurred in Phoenix, Arizona, and after several weeks brucellosis was suspected. By the end of the summer 35 cases had been recognized. Some of the patients were convalescents recovering from tuberculosis, two of whom died. All of the patients had drunk freely of raw goat's milk.

...

Of the 500 serums 16 (3.2 percent) agglutinated the two test antigens, one prepared with a strain of Br. melitensis, and the other with a strain of Br. abortus. Fifteen of the serums gave slight reactions in dilutions of 1:40 or lower, too low a titer titre to be accepted as evidence of present infection. One serum received from the Naval Hospital gave a positive reaction in a dilution of 1:320. This would have been accepted unquestionably as evidence of brucellosis in areas where the disease is endemic. A second sample of the patient’s blood was obtained, and by absorbing the agglutinins from the serum with brucellar antigens it was determined that the infecting organism was of the abortus-suis type.

...

As in most cases of chronic brucellosis, there were no physical signs of disease during long periods of ill health, and I, like very many other brucellosis patients, received the diagnosis of “neurasthenia” (the term commonly used in those days) with its implication of malingering. In my case, exoneration came in 1928, after years of ill health, through the intervention of another disease which required surgery. Cultivation of Br. melitensis from diseased tissue explained the prolonged ill health.

                My experience with chronic brucellosis gave me opportunity to observe at first hand this form of the disease, with its implications. In the 1920’s it was practically unknown in American medicine, although Craig had described three cases in returned soldiers who had served in the Philippine Islands during Spanish-American War of 1898.

                I had read the British and French literature on brucellosis in the Mediterranean area and learned that this disease was prolonged in mild form in many cases and that the chronic patients were apt to be regarded as neurasthenic. I never doubted that brucellar infection was the cause of my trouble. The disease is better known now with slowly growing recognition of the fact that the tests which are generally reliable for the diagnosis of acute brucellosis commonly fail to detect evidence of infection in cases of the chronic disease.

In recent years, however, with the advent of disability insurance and the acceptance of brucellosis as a compensable occupational hazard, malingering is sometimes suggested in the literature on brucellosis as a reason for the failure of recovery, or it is suggested that a diagnosis of psychoneurosis prior to infection be made. The injustice of such damaging judgements judgments based on faulty evidence was obvious when in one sweeping indictment it fell upon sixteen chronic brucellosis patients who failed to recover after contracting the disease in the laboratory at Fort Detrick. I was incited to take up my brucellosis pen again after sixteen years of retirement, in an attempt to stimulate a more zealous search for knowledge of this obscure disease.

To be ill and regarded as an imposter impostor is to be in an almost intolerable situation, and a damaged reputation is not readily repaired. The rule of law that the suspected should be considered innocent unless guilt is proved ought to be applied also in medicine.

...

The survey which gave the most information was in a city of about 107,000 inhabitants, in an area where a simultaneous survey of bovine brucellosis was being carried on as a part of the national program of eradication of the disease from cattle. This city was selected for a study of the prevalence of the human disease because 23 percent of cows were found to be infected and 81 percent of milk was sold raw.

                Among 325 cases studied, 22 were found in which brucellosis appeared to be the logical diagnosis. In 5 cases brucellar infection was proved by cultivation of the organisms; in 9 cases clinical considerations were supported by positive agglutinative reactions with brucellar antigens; in 8 cases a diagnosis of probable of probable brucellosis was made despite the fact that specific tests failed to confirm the clinical evidence of brucellar infection. In general, the contacts of the 22 bucellar patients were limited to the ingestion of milk and other dairy products.

Chapter IX

Southern Rhodesia Leads in the Recognition of Brucellosis of Human of Bovine Origin

The first person to make practical application of the new knowledge of the relationship between Br. melitensis and Br. abortus was L. E. W. Bevan, a veterinarian of Southern Rhodesia. From the time of his arrival in 1905 he had encountered outbreaks of contagious abortion in cattle. Also, a mysterious infection of man which defied diagnosis became a matter of great concern in that area. A Dr. Appleyard, an old but keen clinician, suspected that the disease might be a form of Malta fever, which he had seen elsewhere.

...

of South African Medical Record, he described his method of obtaining blood cultures from patients with brucellosis, and in the February 23, 1924, issue of the same journal he reported that by means of the agglutinin-absorption test he identified the Southern Rhodesian strains as Br. abortus.  Since Orpen did not give the data when he first obtained brucellae from a patient, it is questionable whether his proof of human infection with brucellae of bovine origin antedated the cultivation of brucellae of porcine origin from the Baltimore case in October 1922, which was reported by Keefer in January 24, 1924 number of the Bulletin of the Johns Hopkins Hospital. The records show, however, that the first recognized case of human infection with brucellae of non-caprice origin was found in Southern Rhodesia the year before the Baltimore case occurred.

                In 1925 Bevan wrote that 35 cases of brucellosis not traceable to goats had been recognized in the United States, three of which were of porcine and two of bovine origin.

Chapter X

Studies on Streptococci

For many years I carried on studies of streptococci, chiefly the beta-hemolytic streptococci belonging to group A, in various aspects of their relation to disease.

...

During World War II the first report to be made by the epidemiologist on group-specific immunity against streptococcal infection was published by Rantz and his collaborators. They reported (1945) that during a food-borne epidemic in a military hospital caused by streptococci of type 1, more than 250 cases of clinical infections were discovered. A number of men previously infected by other types of group A streptococci were hospitalized at the time of the epidemic and were exposed to the infection. None of them reacted to the presence of the new type more than a minimum of clinical signs.         For years the late Dr. Schwentker was engaged in studies on the epidemiology of streptococcal infections in Europe, in the U.S. Army, and in the U.S. Navy during World War II. In 1943 he wrote: “All our observations point towards a conclusion that resistance to streptococcal infection is due, at least in large part, to some kind of type-specific immunity”.  In a later report (4) Dr. Schwentker stated that he undertook his naval research with the belief that immunity to streptococcal infections was type specific. But before making this report he changed his mind, after carrying out an experiment in which a group of men were immunized with vaccines prepared with a single type of streptococcus. This group showed 33 percent reduction in total number of streptococcal infections, as compared with a control group. He wrote: “To our surprise, the protection was not type specific”. (I failed to find a detailed report indicating the type of strain he used to prepare the successful vaccine).

...

Apparently Dubas had in mind the streptococci when he wrote in 1945: "The obvious importance of the type-specific antigens, and the ease with which they can be studied, has led to the comparative neglect of the other components of the bacterial cells which can also give rise to protective reactions. There is, however, much evidence for a type of acquired immunity which transcends the limits of type differentiation and which is effective for a whole bacterial group.”

Dubos (5) raised a question concerning the validity of the experimental approach which separates “phenomena and structures into their elementary particles… to study these by highly refined analytical methods… Everything in nature partakes of organized complexity, and the scientist must, therefore, learn to study experimental situations involving a number of mutually integrated systems”. This principle derived from reflections on biologic science in general, emphasizes what the limited data on streptococcal group-specific immunity points out, that the immunogenic properties of the entire bacterial cells should be considered. To future investigators of the epidemiology of streptococcal infections, this offers an interesting field.

...

Streptococcal Bacteriophage

                One of the first features of streptococci to attract the attention was their susceptibility to bacteriophage, and I became interested in the possibility that host susceptibility to the various types of streptococcal phage might serve as a useful character for identification of strains. A good start had been on phage-typing of the Enterobacteriaceae, but this method of classification had not been utilized appreciably in studies of other bacterial families, although the phage phenomenon had been discovered about two decades earlier.

                My first concern, however, was with an idea of that time that since phage destroys bacteria, it should be a good remedy for bacterial infections. The results of my experiments in mice and rabbits showed that the phage inoculated together with sensitive streptococci did not protect the animal. Further, I found that in test tube experiments the action of streptococcal phage was inhibited by animal fluids. This might offer an explanation of its impotency as a therapeutic agent. There was some evidence that phage might activate a sublethal dose of streptococci in mice.

                Two type of streptococcal phage had been described before my work on this subject began, neither of which was capable of lysing strains of group A. I searched for phage with an affinity for strains of group A and found two serologically distinct races of differing affinities, and my assistant, Elsie Sockrider, found another race of phage with an affinity for certain strains of group A not lysed by the races previously found. It was noted that sensitivity to various types of phage was correlated with physiologic and serologic characters of streptococci. This strengthen the belief that phage-sensitivity patterns might be of useful character to aid in the determination of relationship between strains, and in the differentiation of closely related strains. Lysogeny appears to have potential significance in epidemiological studies.

                The most interesting observation that resulted from my studies on streptococcal phage was that at the moment when the phage was destroying the bacterial cells of a sensitive strain, collateral lysis of certain cocci that were resistant to the filtered lysate would occur. I called this the “nascent” state of phage. A similar enhancement of the potency of streptococcal phage in the presence of a growing strain had been noted previously by Gratia.

                With the lapse of years before recognition, it seemed as if my observation of nascent phage would sink quietly into oblivious. Then, twenty-three years after my first publication on the subject, Maxted of London and Krause of Rockefeller Institute published reports on studies of nascent phage at about the same time.

                Maxted, Krause, and investigators in the other laboratories have extended several lines of study on this phenomenon. Results indicate that it is not the phage that causes collateral lysis of resistant strains, but a labile lytic factor with enzymatic properties which is produced by the infected strain at the time of lysis. The enzymatic factor may be used to release various antigens from the cell walls of group A streptococci. Following another line of study, it has been found to produce protoplasts and L forms of group A streptococci. This opens a new approach to investigations of changing morphology.

Epilogue

                The passage of eighteen years since retirement gives a point of vantage from which to review with considerable objectivity the events that shaped my career. In reliving them and reviving old memories, some almost forgotten, my impelling interest was in searching the background which determined the course of events, and in examining the present status of problems on which I worked, to appraise the results of my efforts in the light of subsequent trends. These probings became a part of the memoirs and crowded out comments that might have been made on projects that demanded less of my time and thought.

                Omitted also are memorable incidents which absorbed temporary attention. If this pen was more facile, I might dwell on some of the richly endowed personalities, and the beauties of nature and art that entered my life and passed out leaving their imprints.

                Certainly, there are regrets over difficult situations that I might have handled better. But the course that was open for my ship to sail was on the whole gratifying. The going was rough at times, and there were stretches of clear sailing too.

...