NIH Proposal on Animal Welfare Policy Tightens Some Rules, Clarifies Others

The National Institutes of Health has proposed a revision of the Public Health Service animal welfare policy that is a refinement of, and in some instances stricter than, the current policy. Since almost half of NIH research projects supported through grants and contracts involve the use of animals—most of them rodents—the revised policy could have a broad impact on the biomedical research community.

Dr. William F. Raub, NIH Deputy Director for Extramural Research and Training, discussed NIH's rationale for the revision and outlined some of the changes at the recent national symposium on "Imperatives in Research: Scientific Needs and Animal Welfare." He covered five major areas that differ from current policy:

- Changes in the role of the NIH Guide for the Care and Use of Laboratory Animals regarding the requirements of grants and contracts. The revision distinguishes between the few requirements in the NIH Guide and its many recommendations. In addition, the proposed policy states that acceptance of the "Principles of the Care and Use of Laboratory Animals" would be "mandatory," and not just recommended as in the current policy. (The Principles are included in the appendix of the current NIH Guide.)

- Types of Assurance. Awardees institutions would have a choice of two ways to comply with the proposed policy: full accreditation by the American Association for the Accreditation of Laboratory Animal Care (AAALAC), a national nonprofit organization with a well-established inspection and accrediting system, or an assurance based on self-assessment.

The self-assessment option would be more specific (than stated in the current policy) in providing NIH with details and results of self-assessment and an annual report on progress toward correction of deficiencies. Institutions choosing the self-assessment option also would be subject to random selection for site visits by NIH.

(See ANIMALS, Page 11)
Gallo Team Finds AIDS Virus
(Continued from Page 1)

Dr. Gallo's laboratory together with clini-
cians and scientists from the NCI Immunol-
ogy Branch, Memorial Sloan-Kettering Can-
cer Center, Duke University, the University of
North Carolina, North Shore University Hospi-
tal on Long Island, Walter Reed Army Insti-
tute of Research in Washington, D.C., the
University of Medicine and Dentistry of New
Jersey in Newark, and New England Deacon-
ess Hospital in Boston were able to isolate the
HTLV-III viruses by finding human T-cells
that grow well in the laboratory and are espe-
cially permissive for infection by these
viruses.

This discovery made possible the isolation of
proteins made by the viruses from these
cells. Enough viral protein was produced to
test selected blood samples for the presence of
antibody to the viruses. As a result, the sci-
entists were able to devise a simple labora-
tory test that diagnoses the presence of
HTLV-III antibodies in blood.

NCI scientists predict that within 6 months
it will be possible to produce the amounts of
viral protein needed for large-scale
screening of blood samples by blood banks
and diagnostic laboratories. Rapid tests for
antibodies to HTLV-III in human blood are al-
ready feasible.

Scientists at the NCI Frederick Cancer Re-
search Facility are collaborating with Dr. Gal-
lo's group to develop procedures for large-
scale production of these proteins.

NCI scientists also believe it will be possi-
ble to develop new ideas for treatment and a
vaccine for AIDS.

These scientists are now exploring the de-
tailed biochemical and immunological char-
acteristics of the new HTLV-III viruses, which
infect helper T-cells preferentially.

Their lethal effect on T-cells is unusual for
the HTLV viruses. Together with detectable
differences in some of their proteins and ge-
netic material, the ability to kill T-cells
clearly separates these viruses from other
members of the HTLV family.

The virus isolated by the NCI scientists is a
member of a family of retroviruses, which
have been studied extensively in animals.
The genetic material in these viruses is
ribonucleic acid (RNA).

The retroviruses are named for their ability
to convert RNA into deoxyribonucleic acid
(DNA), the hereditary chemical comprising
the genes of human and animal cells.

In so doing, these viruses use the genetic
machinery of the cells they infect to make the
proteins they need to survive. In the process,
many retroviruses cause a variety of ailments
in animals, including depressed immune
functions and cancer.

The first member of the HTLV family of
viruses, HTLV-I, was isolated in 1978 and first
published in 1980, also by Dr. Gallo and his
coworkers. It has been re-isolated many
times since then in this country and abroad
from a form of leukemia and lymphoma that
affects mature T-cells.

Extensive epidemiologic studies have
linked HTLV-I to clusters of these cancers in
certain parts of the world, particularly sou-
thern Japan, the Caribbean, and parts of South
America and Africa.

A related virus, called HTLV-II, rarely iso-
lated, originally taken from a patient with a
haapy cell leukemia by Dr. Gallo and his group
in collaboration with UCLA scientists.

Dr. Gallo and his collaborators first re-
ported biochemical evidence, and Dr. Max
Essex and other scientists from the Harvard
School of Public Health and the Centers for
Disease Control reported immunological evi-
dence, for an association between HTLV or a
variant of it with AIDS in the May 12, 1983, is-
sue of Science.

The Pharmacology Research Associate
Program of the National Institute of General
Medical Sciences will sponsor a lecture for
its fellows, their preceptors, and all inter-
ested NIH staff on Wednesday, May 9, at
9:30 a.m. in the ACRF amphitheater.

"Of Toxicity and Panacea, of Cabbages
and King's" is the title of the talk to be deliv-
ered by Dr. Sidney Nelson, associate profes-
sor of medicinal chemistry, school of phar-
my, University of Washington, Seattle.

After obtaining his Ph.D from the University
of California, San Francisco, Dr. Nelson was
a PRAT fellow from 1974 to 1976 under Dr.
James Gillette, chief of the Laboratory of
Chemical Pharnacy, Watsy, Reed Army Insti-
tute, Lung, and Blood Institute.

He is the recipient of two prestigious

awards—the John J. Abel Award of the
American Society for Pharmacology and Ex-
perimental Therapeutics in 1981, and the
Frank Blood Award in Toxicology (co-
recipient) in 1983.

Following the lecture, the 22 current PRAT
fellows will present informal poster sessions
on the research they are conducting. The
poster session will take place adjacent to the
NIH Visitors Center.

The PRAT Program offers 2 years of
postdoctoral research training in pharmacol-
ogy within the intramural laboratories of NIH
and the Alcohol, Drug Abuse, and Mental
Health Administration for outstanding individ-
uals with backgrounds in clinical medicine or
basic sciences.