
Computer Programs in Biomedicine 11 (1980) 21-42
© Elsevier/North-Holland Biomedical Press

BMON2 - A D I S T R I B U T E D M O N I T O R SYSTEM F O R B I O L O G I C A L IMAGE P R O C E S S I N G

Peter LEMKIN and Lewis LIPKIN
hnage Processing Unit, Division of Cancer Biology and Diagnosis, National Cancer Institute, National Institutes of Health,
Bethesda, MD 20205, USA

This paper presents an example of a distributed monitor system, BMON2, which was developed and is in daily use in a biologi-
cal image processing environment. Some useful aspects of such a system are discussed, particularly those which make tbr easier
biologist-user interaction and system extensibility. The principles of extension of the distributed monitor to a time-shared com-
puter system is outlined.

Biological Buffer-memory C o n t r o l 4 a n g u a g e s l)ata-acquisition
Distributed-processing Distributed-system l-ranlc-buffer Image-memory
Picture-processing Real-time-picture-processor Software Systems
BMON2 PDP8 RTPP

Distributed
I m age-p rote ssing
Transforms

I. Introduction

The biologist, employing an interactive image pro-
cessing system expects (1) an extensive repertoire of
image processing andr I /0 procedures which are sim-
ply and easily invoked and (2) the ability to more or
less freely combine such procedures into complex
sequences of operations and interactively apply them
to stored images. In pursuing his or her objectives of
biologically significant and useful results, the biol-
ogist is intolerant of restrictive syntax and fatal errors
which return him to ground zero. He is particularly
resentful of constraints in the use of procedures
which only become appar~ at when the procedure is
part of a sequence. The biologist user tends to want
to learn only so much about the system as is neces-
sary for the solution of his problem. It is advanta-
geous if his progression in the interactive develop-
ment of sequences of effective procedures results in
only minimal demands on him for additional system
and syntactic information.

BMON2, a general purpose image processing sys-
tem, evolved in large measure in the response to our
experience of the biologist user's needs and behav-
ior. Its repertoire of procedures, and some of its
interactive characteristics parallel in part such inter-
active acquisition/processing systems as TICAS [28],

SCANIT [2], and SCANSCANS [1]. Several signifi-
cant differences, in system philosophy, in system
design and in the principles of implementation when
taken together make BMON2 quite unusual as well as
particularly useful. Of these features, the distributed
monitor concept, the concept of major states and
substates, very large operators, the ease of addition of
external procedures, the role of distributed syntax
checking, and the user transparent multilevel image
referencing will be presented here in more or less
detail. The extension of BMON2 principles to a time
sharing environment will essentially complete this
paper. References to actually embodied image pro-
cessing procedures will be minimal and only sufficient
to convey the flavor of system operation and its
design. Detailed descriptions of these operators may
be found in the BMON2 reference manual [10]. A
sample of a complex sequence of BMON2 commands
will also be given.

1.1. Requirements for image processing o f biological
images

The general class of biological images covers a wide
range of image characteristics. Even within the group
of X-rays alone the disparities in say, image contrasts,
between a skull series and a plain film of the abdo-

21

22 P. l.rmkin, i.. Lipkin. B.IION2 Distributed monitor system

men is not only visually striking but in part deter-
mines the kinds of processing that may be easily
attempted. It is truism, of course that the "menu" of
image processing procedures available in a given sys-
tem in large measure reflects the kinds of images to
be analyzed. In that regard, the repertoire of proce-
dures in BMON2 reflects the (largely fortuitous) fact
that the images with which we deal ('cells and tissues,
electron micrographs of nucleic acid strands, and I-
and 2-dimensional electrophoretic gels)are despite
their varied origin, all characterized by relatively low
contrast and by a moderate to marked degree of com-
plexity. Classes of images such as these are particu-
larly appropriate fi~r strategies inwflving the stepwise
experimental applicati~m of successive pro,:edures to
achieve a given analytic end.

The scope and range of the procedures that survive
(in a Darwinian sense)in a system such as BMON2
also reP, ect the relative sophistication ~f the analytic
~bjectives of !he users. The same secti~'.n of neural tis-
sue can be re;,arded as the subject fi~r a count of neu-
rons in the sa,nple, or on the other h:~n,j it may be
viewed as one of a set for the establishment of sub-
regions, i.e., the data are viewed ii| terms of p~;ential
correspondences and/or similarities of structu:e. In
our material, establishment of correspondences
between similar possibly temporally, spatially or
ontogenetic related samples is a common theme
among several of the major classes of images with
which we deal. Some of the very large operators (see
FI.ICKER and CMPGEL) developed for this system
reflect this common interest ~,hich transcends a
diversi:y of picture types.

All of those images mentioned are, to repeat, char-
acteristicaUy low contrast, complex images, in design-
ing alg~)rithms to process them. it is useful to be able
to expeciment with various image processing proce-
dures tn~der step by step control. Such inieraction
greatb f~cilitates algorithm development. This type
of interaction, however, requires that the develop-
ment system have an easily learned, simple and logical
command structure, it should also reflect the higher
level picture operations, data structures, and hard-
ware of the implementation from the user's point of
view.

For example, the READ or WRITE commands to
move images between hardware image frame buffers
and auxiliary storage should behave in a generic man-

ner. "rhat is, there should be transparent appropriate
default options which should force only minimal if
any distinctions to be made by the user between disk
and tape devices. As another example, parameters
involving image buffer size or computing window (the
region of interest within the image buffer) should be
implicitly defined and should remain 'sticky', i.e.,
defined between operations where required.

It is obvious that facilities for procedural sequence
construction and execution are even more essential in
such a biological millieu. Two major such facilities
exist at the primitive level: the assignment of picture
operation statements to interactive command keys,
and the execution of command sequences using inter-
active batch processing. For example, a procedure
developed fi~r dissecting and editing a previously seg-
mented boundary can be applied, using interactive
batch, to sequence and perform the bookkeeping on a
large set of boumlaries. Lists of images or other data
to be processed can first be generated using one pro-
cedure and then processed, in turn, using sequences
of other operations under interactive batch. As a case
in point, in searching for polypeptide spot differences
between pairs of 2-dimensional electr,~phoretic gel
images, the sets of pairs of gels to be compared may
be gen :rated automatically and the output used to
create a batch job which will drive the gel comparison
operation [17.18}.

The logging of intermediate results is useful in
reconst rutting successful sequences of operations or
for recording measurements while interaetively exper-
imenting witt~ image operations. Saving and later
using non-image data structures produced by these
operators (such as boundaries, lists, scalars etc.) also
simplifies concatenating sequences of image opera-
tions depeadent on these intermediate results.

Often we have found large subsystems are needed
which involve combining several image operations in
an efficient manner. Such subsets may have been
developed either interactively or using sequences of
image operators in batch. Combining operations often
leads to dramatic increases in the usability of the sys-
tem. Batct sequences were used in analyzing bone
marrow smears [11,13] and in editing nucleic acid
boundaries extracted from electron micrographs [14,
10,25]. The combining of a large subset of separate
operators into a single multi-use operator is called a
very large operator or VLO. In our system, these

P. Lemkin, L. Lipkin, BMON2 - Distributed monitor system 23

include operators to perform noise removal [14],
boundary analysis and segment splitting [15], inter-
actively drawn boundary extraction, boundary seg-
mentation [11], boundary editing and marking,
region isolation [16], and flicker-comparison and
analysis of 2-dimensional gel images [! 7,18].

VLOs gain additional advantage by residing in a
general purpose image processing system which they
would not have if they were written to stand com-
pletely alone. These advantages include the ability to
pre- and/or post-process images. VLOs developed in
the context of the general purpose system can also
take advantage of the generally large number of sub-
routines and code sequences existing for other opera-
tors, which may be used for the composition of the
new operators.

One aspect of any general purpose system which is
to be used by a number of researchers with different
investigative interests is to make it as easy as possible
to select a working subset of picture operators neces-
sary for their particular problems. Learning enough of
the system to 'get on the air' should also be simplified
to encourage its use. Our experience with the BMON2
system has been that interested biologists could learn
the minimum subset of picture operators necessary to
perform useful work in their area in about one day or
less. It should be noted that biologist-users should not
be expected to learn the entire system in order to get
useful work done, just as programmers using PL/! do
not need to know all aspects of the language in order
to write programs in PL/I. A motivated but computer
science naive biologist may learn a viable subset of
the system as easily and as rapidly as an experienced
~rogrammer.

The physical interface between the biologist's
image data and an image analycis ~,ystem should be
relatively fast and simple. Various image forms such
as 35 mm film, 4 X 5, 8 X l0 or 11 X 14 sheet film as
well as optical microscope images should be easily
scanned using the RTPP. A television frame image
acquisition system is useful in those cases where
image shading errors can be controlled and many
frames of data are to be analyzed. Resultant pro-
cessed images should be available through various
image recording media (e.g., Polaroid for quick check-
ing, 35 mm for quality images etc.) as well as being
maintained in archival form on magnetic tape.

2. A distributed monitor system

One of the keys to a successful implementation
achieving some of the goals just mentioned lies in
being able to easily make changes to parts of the sys-
tem without rebuilding the entire system each time a
change is made. Constructing the system as a dis-
tributed program rather than a compiled system facil-
itates achievement of this goal. Such a distributed
program would have the speed of a compiled system
through the use of small compiled modules rather
than through the use of a slower interpreter.

An important aspect of the DMS is the concept of
a global state. The global state consists of a set of sub-
states which may be modified at any particular time
by one of several separate operators. By state and
substate we mean that collection of global variables
associated together. The DMS is implemented as a set
of chained (overlayed) programs with a disk file copy
of the state. The operators are implemented as pro-
grains meeting specified criteria such that they may
be overlayed (in a manner to be discussed in detail
later). Furthermore, these programs may be dis-
tributed arbitrarily over the file system of the given
machine. One of these programs serves as the master.
It communicates with the user command stream and
dispatches control to the distributed operators. Fig-
ure l shows a block diagram illustrating the DMS con-
cept. A distributed operator may itself be distributed.
The primary constraints are that a distributed opera-
tor be started by and return to the master program,
and that any state changes be instantiated in the disk
backup copy of the state. In fig. 2, distributed opera-
tor Oi actually consists of the sequence of operators
Oil, Oi2, ..., Oim. The last operator, Oim, performs
the possible state backup on disk and returns to the
master program.

A batch operating system (such as the DEC OS8
[4]) is an example of a DMS. The programs to be run
are the set {Oi} while the batch program corresponds
to the master program. The state consists of a pointer
to the current position in the batch input stream.

A major constraint of a DMS is that all ~:,perator
programs Oi, although they may chain to additional
programs (e.g., in fig. 2, Oil ~ Oi2 ~ ... ~ Oim), must
return to the DMS master program when they are fin-
ished. D.uring the passage of control between opera-
tors and suboperators, changes in state must be main-

24 P. Lemkin, L. LipkOl. BMON2 - Distributed monitor system

Disk Backup File(s) of State]

f

State- Kept in Core

I 1,
• • • • • • •

Additional
"qi"---- 'user parameter

input if required

[,, Master Program ~ - ~ U s e r Command
Input

Fig. 1. Block d.iagram of a DMS. The master program receives messages from the user input stream. It then either executes the
command itself or directs a distributed operator to execute it. The state in core is backed up when required on the disk. Addi-
tional user input may be required by the distributed operators. Control e~,entuaily returns to the master progam where it waits for
another command to be sent.

State

Master Program

State
I

Master Program

Fig 2. A distributed operator may itself be distributed. The
primary constraints are that it be started by and return to the
master program, and any state changes be instantiated in the
disk backup copy of the state.

tained in the bookkeeping of the system. The mas-
ter's convention is to (1) backup the state to a disk
file before starting an external operator, and (2)
restore the state from the disk file upon being
restarted by an external operator upon its comple-
tion. It is necessary then, that an external operator
changing the state mus', save the changed state on the
disk when it is finished before restarting the master
program.

2.1. Monitor state and distributed modules

The global state of a system is a set of instantiated
parameters accessible by all parts of that system.

P. Lemkin, L. Lipkin, BMON2 - Distributed monitor system 25

Many parts of the system not needing knowledge of
the entire global state are restricted to access only a
substate (a substate being a unique subset of these
parameters). This access can be rigidly enforced or,
less desirably, controlled by agreement when writing
operator programs.

The global state should be capaaie of initialization
either in part or in its entirety. This has the distinct
advantage of repairing possible damage caused by a
misguided external operator without destroying the
entire state by reinitialization.

Such a global state concept is not new to com-
puter science and has in fact been used in artificial
intelligence research for some time [20]. The state
has been commonly thought of as a blackboard where
operators requiring state information may look if
necessary and those generating information may place
messages. Those operators not requiring the stale,
however are not bothered by its existence.

There is a need to extend and delete the type of
information contained in a st.ate (i.e., its scope) over
time as a system matures. Therefore, facilities must
be included to allow this expan:ion and contraction
to occur. Dynamic state variation therefore allows
new operators with new suhstate requirements to be
easily added. Major new sub~tates can be added by
,'sing a subset tree of pointers and attributes in the
global state. Such a tree can be started in the global
state (so that it can always be found) and then traced
as far as possible in the state found in core. Further
pointers can then direct to the rest of the tree or the
substates themselves as disk files. Removing a sub-
state merely means finding its attribute and deleting
the entry from the tree.

It is of interest that from both the view of the
application programmer and even more significantly,
the biological user, this places minimal requirements
on what must be learned in order to add or use a new
function.]'his tends obviously to make for greater
biologist acceptability.

2.2. Operating system requirements imposed by a
DMS

The CPU and core memory requirements for a
DMS are modest while the disk space required
depends on the number of external operators. As will
be demonstrated in section 3, a very large DMS can

be built on a machine as simple as a 12-bit word size
PDP8 with 32 k 12-bit words of core memory and
1 - 6 M words of disk storage running under DEC's
OS8 operating system [4]. :~everal features of a host
monitor system are required for the successful imple-
mentation of a DMS. The most important is a disk
file system that can access files whose names and
devices are specified during run time. Another
~equirement is to be able to specify a program to be
loaded and started (i.e., run) from the currently
running program. This is sometimes called chaining or
dynamic overlaying. In order to run a sequence of
programs under batch, there must be a mechanism for
intercepting batch stream data from a program. (In
OS8, this mechanism is called the command decoder.)
Thus the actual restrictions are minimal and should
present no major difficulty in implementing a DMS
on most computer systems.

2.3. Operators - built in and external

Operators in a DMS consist of two types: built in
and external operators. Built in operators are physi-
cally part of the master program and externals are all
others. Since built in operators will execute faster not
having to be loaded and run as separate programs,
care should be taken in selecting those operators to
be made 'built ins'. Several informal 'rules' have
evolved in our work which we use to decide whether
a needed function is to be built in.

1. The operator should be small. Large operators will
waste master program space.

. The operator should be invoked fairly often. The
additional overhead of making a rarely used opera-
tor external should not greatly contribute to aver-
age system overhead.

. The execution time of the operator should be
short. If the execution time is long, the additional
time to evaluate it if it is an external operator
would not contribute greatly to the system over-
head.

4. There already exists a built in operator similar to
the new operator for which most of the code can
be shared resulting in minimal code overhead.

26 P. i.emkhl. L. Lipkht. B3IO.V2 - Distributed monitor O'stem

in a continually evolving system such as BMON2, a
working set of built in operators is eventually pro-
duced by tuning the system through using it. O,r
working set evolved over several months with some
additions and a few deletions to the working set of
built in operators. After 4 years ,,f using BMON2, we
are still adding very large operators as well as new
operators, but the list of 'built ins' has stabilized long

s~nce.

2. 3.1. SecmMary pars#L¢ o f c~mmtands ht distributed

(, l) (' r a h ~r,,~

Commands are generally received by the master
pr,,gram which p.'lrses il. Further parsing of a com-
mand may be required by parlicular ,,perators, in
~ hicla case secondary parsing is perfi,rmed. This
semantic checkinb, phase verifies parameters expected
against those actually specified fi, r the distributed
t,per:itor in the distribulcd operat,)r itself. Further-
mote. tlle t)perator may request additional user input
which in turn must be parsed. By distributing the
parsing (,f user input the complexity of the master
program parser can be reduced but at the expense of
some duplication of parser code in the distributed
operator modules.

3. Current implementation - BMON2

3.1. BM(),%~ bu./.!'er memora' hardware and software
]acilitics

The BMON2 system will now be described in
, erms of the DMS concepts developed above. The
particular hardware used by this system is discussed
as well as the structure of the BMON2 monitor itself.
The ctm]putcr used is a DEC PDP8e with --6 M
12.t~it w¢)rds t,f disk memory and 32 k 12-bit word
core memt,ry, it t,perates under DEC's OS8 single
user (ntm-interrupt driven) operatitlg system [4].
Image frame buffer memory Is part of the real time
picttlre processor (RTPP) 14--6!. The RTPP consists
prin~arily of a PDPSe computer, a 11 frame/s TV dis-
play can]era subsystem built around an IMANCO
Quantimet 720 system, image frame buffer men]aries,
and an ir.teractive control desk. Another version of
the RTPP has been constructed around a 27 frame/s
CRT display with a 512 X 512 viewable area and

without TV camera input. Figure 3 is a block diagram
of the RTPP. Figure 4 shows the physical placement
of the TV display and interactive control desk. Fig-
ure 5 illustrates the keys and switches of the control
desk.

3.1.1. Stnwture o f buffer memory frame buffer hard-
w a r e

The RTPP buffer memory hardware consists of
eight 256 X 256 arrays of 16-bit pixels'(which may be
used as two 8-bit pixels, designated as low and high
byte. as well). The memories are addressed as BMO
through aM7. The 8-bit high image in a BM is
addressed as BMitt and the low image as BMiL or
BMi. P::: ~caily, each BM consists of 4 wirewrapped
boards each, holding sixty-four 4 k-bits dynamic
RAMs.

The BM controller interface allows multiple device
requests to be made ot the memories in the following
manner: Vidicon or Piumbicon TV camera video to
BM: BM t,, TV display: PDP8e memory to/from BM.
Analog video from the TV camera is digitized at

Light i - - ~ - ~ - - ~ ~ / ~,
' V d con ' ! Ouant~me! / Gray Level

laox .,.,f + i : ' " I l l TV ~ 720 ~ CRT D~spla¥ j
fo, , . +

. i Camera . J i TV Svssem 860X720 ,r

1
Compute , ': / I
Contr II i _ Ph,mh+corl l I D a t 3 R ' C o n t r o l
A, ,o~ , ~ - ~ . rv , J I

• i Camera I
M ic roscope /

i Bu e M e o v w . . 256X256
Contro l ler

! Buf fer M e m o n e s

i / i Data f:l" Con t ro l

1 oo,,o, oo,,o,

6 M Disk T ~ Desk

y

User "~
Telelype;

Fig. 3. Block diagram of tile RTPP. The PDP8e computer
directs the microscope state to positions determined either
manually by the operator. Images may be acquired by the
buffer memories for processing by the BMON2 system. Raw
images as well as processed images may be displayed on the
Ouantimet 720 CRT display. TV camera input is from one of
the two alternate TV cameras which are easily interchanged
in -:2 min. The user interacts with all of the above hardware
via the PDPSe using the BMON2 image processing software
system. RTPP = real time picture processor.

P. Lemkin , L. Lipkht, BMON2 - Distributed moni tor sys tem '~'~ 27

m

¢ - , ' h . . ; . •

' • - •

I tllgfO

m

Fig. 4. Phat~graph of the TV display and interactive control desk.

8 Mhz rate to 8-bits. This digitized video is assembled
into 4 pixel chunks which may then be written into
tile BMs. If BM data is to be displayed and/or normal
camera video is to be displayed, then tile 8-bit data
maltiplexed from the two sources are then converted
back to analog and sent to the TV display controller.
Because the BM cycles every 500 ns and the TV
camera/display pixel rate is 125 ns, BM data is trans-
feted in 4 pixel ch:mks and buffered accordingly.
Thus random accessing of pixels takes a minimum of
500 ns instead of the 125 ns possible when trans-
ferring data in raster mode.

The pixel addressing system is the RTPP logical
coordinate system (LCS). The LCS has (0, O) as the
upper left-hand corner (x, y)coordinates and (1023,
1023) as the low~:~ right-hand corner. The visible
screen size is effectively [0:860, 0:680]. Each BM is
positioned independently in the LCS. Normally, the

images are positioned adjacent to each other. Individ-
ual BMs or sets of BMs may be posted on the TV
monitor independently, with either high or low bytes
being shown. Addressing conflicts in BMs which over-
lap in LCS space are resolved with a hardwired prior-
ity network such that BMO is displayed before BMI,
BMI before BM2 etc. The normally undisplayed byte
of the BM having the gray scale image being displayed
may be displayed as a binary overlay. This is useful
for implementing line drawings. Furthermore, the
PDP8e can synchronize with the start of each new
display frame in order to decide on the correct time
to change the BMs being displayed (the display state).

Pixe! data may be translerred at 2.4 ~s/pixel using
direct memory access with the PDP8e. Data are trans-
ferred in either of 4 packed modes: low byte/pixel,
high byte/pixel, 16-b't pixel, and 16-bit unpacked
with sign extension for performing arithmetic. A 21-

28 P. Lemkin. L. L ipkin. BMO,¥2 - Distributed monitor system

", LEF¢ ""~

\ % % % % N % a \

" ' - . 1 'w'. " " ' " " T " ? ' J

Fig. 5. l l lusration of the RTPP interactive control desk keys and switches. The RTPP interactive control desk is situated next to
the RTPP with the Ouantimct-720 video display to the rear of the control desk and the Axiomat microscope off to the side. A
Graphpen spark tablet is located immediately in front of the operator with the pushbuttons and lights mounted in two large
boxes to tile left and right. The remote Quantimet variable frame and scale keys are located in a small box with a movable cable as
is a joystick for the le iss Axiomat (x, y) stepping stage. The latter has a long cable and may be used at the microscope for control
of the stage while viewing through the eyepiece of the microscope. The control desk controls are fisted as follows going from left
to right and top to bottom (for the left box first): the QSTAT lights indicate the status of the Quantimet interface; the pots are
connected to A/D channels in the PDP8e; FBW2 are lit "command" keys for the PDP8e; the remote frame switch enables the
remot,: frame and scale switches even when the PDP8e has not enabled them; the frame size switch freezes the frame and scale
sizes so that a frame of fixed size may be moved around; the standby switch places the Quantimet display and system control in
standby mode; the motors enable switch (also in joystick box) enables the stepping motors when the light above it is on. For tl~e
right control box, the controls arc: keypad display of keypad input foi the PDP8e; FBW3 'classification' keys for the PDP8e;
DISPI/2 PDP8e display lights which are decoded as BCD in the top lights and as octal in the bottom lights: FBW4 PDPSe .toggle
switches; keypad to input 6 BCD digits to the PDP8e; FBWS/6/7 PDPSe octal digiswitches; Execute key used to execute (inter-
pretively by the PDP8e) instructions given in the digiswitches; eight 5-position spring loaded toggle switches to control various
stepping motors with fast and slow speeds in both forward and reverse directions.

bit address is needed to specify the transfer. The state
variables specifying these parameters are also speci-
fied.

Byte BM Y X
select number address address

Fortran
COMMON state
variable

2-bits 3-bits 8-bits 8-bits

/BYTE MEM I Y I X

3.1.2. Structure of bufjer memoo, software address-

Although it is possible to code a picture operator

to perform BM !/0 directly, this is discouraged.
Instead, two subroutine packages were developed to
do this: BMIO and BMOMNI [8]. BMIO maximizes
data rates but requires detailed knowledge of the sys-
tem state variables in COMMON, while BMOMNI is
for the naive programmer, and requires little detailed
system knowledge. BMIO consists of a set of Fortran
procedures with parameters and data being passed
through COMMON state variables. BMOMNI is called
with an operation request number and all parameters
and data are passed as subroutine argun,ents.
BMOMNI actually contains redundant copies of
BMIO subroutines as well as controlling > 30 other
RTPP I/0 devices such as switches, display cursor,
computing window display etc. The various I/0
modes and subroutine entry names are listed in

P. Lemkin, L. Lipk#t, BMON2 - Distributed monitor system 29

Table 1
Picture memory l/:~ccessing procedures

a. Point or pixel byte mode:~CK2D/FETCH2D.
COMMON args: [MEM, IBYTE,~..IY, IX, IZ].
COMMON data: [IZ]

b. Line byte mode: T3BUF (buffer, opr).
opt :-- 0/1 to read/write 3 lines packed
opr = 2/3 io rcad/wiite I line unpacked.
COMMON args: [MEM, IBYTE, IY]
data: [buffer, opt]

c. 3 x 3 neighborhood byte mode using triple line buffering:
GET! 1.

COMMON args: [MEM, IBYTE, IY, IXI.
COMMON data: [i10, i11, 1181 as:

!13 !12 i l l (x - l , y - l) (x , y - l) (x + l , y - 1)
i14 118 110 (x - l , y) (x,)') (x+ l ,Y)
!15 !16 117 (x - 1 , 3 , + 1) (x , y + l) (x + l , y + l)

centered at i 18 (x, y"

d. 3 x 3 neigborhood byte mode using fresh copy buffering:
GETNGH.

COMMON args: [MEM, IBYTE, IY, IX].
COMMON data: [!10, !11 118] as:

!13 112 i l l (x - l , y - l) (x , y - 1) (x + l , y - 1)
!14 !18 !10 (x - l , y) (x ,y) (x+ 1,.1')
!15 !16 !17 (x -1 , . 1 '+1) (x , y + l) (x + l , y + l)

centered at !18 (x,y)

e. 512 pixei/line byte mode is simulated using 4 BMs and
the T3BUF procedure in single line mode. The BMs are
aligned as:

BM0 BMI or BM4 BM5 or BMOH BM1H or BM41i BMSH
BM2 BM3 BM6 BM7 BM2H BM3H BM6!I BM711

lems. Perhaps both of these coupled with a flexible,
biologically concerned programming staff is the rea-
son.

3,1.3. Levels o f accessing an image
An image may be processed at several levels of

resolution. These include, from highest to lowest
levels:
(a) The entire display,;
(b) Within the entire display defining at least one BM;

(c) Within a BM defining a computing window;
(d) Within the computing window defining a cursor

to point to a specific pixel.
Useful operator interaction requires that programs
and users be able to articulate each of these image
levels.

3.2. Software architecture

3.2.1. Ma/or operator groups
The set of BMON2 operators may be more easily

understood if they are grouped according to function.

The major groups are listed in table 2 with the

detailed operator lists given in appendix A. By group-
ing common operators together, the programmer can
often take advantage of procedures common to sev-

eral operators within a group.

The following algorithm is used to perform the 512 to
256 mapping based on input line IY1:

Procedure I0512(IY1);
Begin '512 pixel line 1/(9"
DIMENSION IBUF[0 : 511];
IF IYI > 255 THEN MEM: = 2 ELSE MEM: = 0;
IY: = IYI A'377;
T3BUF(IBUF[0], opr);
MEM: -- MEM + 1;
T3BUF(IBUF [256], opr);
End '512 pixel line I/0";

table 1 with the names of parameters passed through
Fortran COMMON.

There is n~ reason why BMOMN! could not be
profitably employed by a user. This has not occurred,
which may reflect either the sufficiency of the reper-
toire or the unconcern of biologists with system prob-

Table 2
Operator groups

1. Image display and acquisition operators
2. Image input/output operators
3. Control desk
4. State initialization and state inquiry
5. Auxilliary programming
6. Synthetic image operators
7. Unary image point operators
8. Neighborhood unary image operators
9. Point binary image operators

10. Statistical display operators
11. Line drawing operators
12. Segmentation operators
13. Scalar measurement operators
14. Quantimet function operators
15. Texture measurement operators
16. 3 Dimensional reconstruction operators

30 P. Lemkin. L. Lipkin. BMON2 - Distributed monitor system

3.2.2. Skeletons - structures fi~r constracting new
operators

A skeleton is the structure within which a new
external operator may be constructed. It consists of
all pre- and post-operator procedures e.ece~sary to
smoothly interface a new operator with the BMON2
system. The structure of a skeleton is given here in
outline tbnn as algorithm A.

Algorithm A. Operator skeleton procedure

i. Print the name of the operator.
2. Do any additional syntax or semantic checking

of the command line parse required for the par-
ticular operator. For example, BMs which must
be present need to be checked for. If the specifi-
cation is incorrect, then print a message and take
the error return back to BMON2 (see section
3.3.5).

2.1. Restore the state in COMMON. (Not normaJly
required.)

3. Evaluate the kernel of the operator.
4. Save COMMON in the state disk files only if

there was any change to the state.
5. Chain back to BMON2 via the OS8 monitor.

BMON2 itself was constructed so that the kernel
procedures required for the up to 64 built-in opera-
tors were included in the main program. These proce-
dures were implemented by a set of 9 subinterpreter
subroutines, auxiliary subroutine packages BMAXI
through BMAX9. Each in turn can then be used to
evaluate the selected function as required by passing
the function number desired through a COMMON
variable OVAL). For example, tile BMAX3 package
contains the following functions listed in table 3.
These auxiliary functions may also be used in compo-
sition with other software presently in the existing
external operators to create new operators.

3.2.3. Solh'are state o f BMON2

We have previously compared the software state of
a DMS to a blackboard where messages may be left
/'or various procedures which may require them. The
BMON2 software state includes some of the following
substate variables listed in table 4 which are instanti-
ated in Fortran COMMON. The BMON2 state is saved
on two disk files SVDDTG.DA and SVBMON.DA
consisting of a partition of COMMON. When BMON2

Table 3
Example of auxiliary functions in procedure BMAX3.FT

IVAL Function

6
7
8
9

10

BMj = HISTOGRAM(BMi)
Setup the computing window (KXI : KK2,

KYI : KY2)
BMj = EDGE(BMi, threshold 1, threshold 2)
BMj- AVG8(BMi)
Q-register = EVAL(arg l:arg 2; switches for

add, subtract, etc.)
BMj = GRAYBAR
BMj = LAPLACE(BMi)
BMj - GRAD4(BMi)
BMj - SHOWHISTOGRAM
BMj = FILLPINHOLES(BMi)

is started, the state is restored from these files and
when BMON2 chains to an external operator, the
state is saved in these state files. External operators
which change the state are require, to save the new
state in the state files before returning (via chaining)
to BMON2. A parameterized subroutine BSCOMMON
is called to swap COMMON to the disk for ~,-mg and
restoring the state.

3.2.4. BMON2 syntax

Commands are normally entered one per !ine and
are prompted for by BMON2 printing a '*'. Seine
typical examples of command lines are given here to
show the flavor of the language before its syntax is
discussed in detail.

, INIT
*POST, BMO
,BM 1 - COPY, BMO
*BM2 - SLICE, BMO, 150, 255
*BM2 - SLICE, BMO, PO
*BM3H - GRAYBAR/I
*BM2 - COLOR, 128
*BM5 - READ, MTAO: LLOO27.PX/R
*SETGENSYM, LL, 0028
*MTAI :GENSYM.PX - WRITE, BM7
*BM3 - BMI, ADD, BM2
*BM4 - BMI, DIFF/U, BM2
,BM5 - GRAD4, BM2

The general form of a command always includes

P. Lemkin, L. Lipkin, BMON2 - Distributed monitor system 31

Table 4
Some of ten used s tate variables

1. Parse state variables:
MCD[! : 36] - unparsed c o m m a n d decode r input buffer
KOUTFILE[1 : 41 - o u t p u t symbol n a m e f rom parser
KINI : ILE[I : 5, 1 : 4] - 5 input s y m b o l names f rom

parser
ICNUM [1 : 5] - 5 i n p m symbols parsed as number s

f rom parser
ISW[1 : 361 - inpu t binary switches, eg.,]S f rom parser
KDEVOUT[1] - o u t p u t device name f rom parser
KDEVIN[1 : 5] - input device names f rom parser
IBMI, l t lGH1 - I st input BM n a m b e r and byte f rom

parser
IBM2, IHGH2 - 2nd BM number and by te f rom parser
JBM, JHGH - o u t p u t BM number and by te fr~om parser
IMA, IMB - 1st BM post bit pa t te rn f rom parser

2. Buffer m e m o r y posi t ion variables:
LSAVE[x :), , BMO : BM7] - posi t ions on in the

display
IPSTA, IPSTB - BM A and B group post status words
IXPOSITION, IYPOSITION - current cursor
KXl : KX2, KY1 : KY2 - compu t ing w i n d o w in LCS

3 Buffer m e m o r y addressing variables:
IX, IY, IZ, MFM, IBYTE - BM I / 0 address parameters
KX, KY, I X l . IX2, IY1, IY2 - free addressing variables
LASTY - last y address used in triple l ine buffer ing
LASTBM - last MEM address in tr iple line buffer ing
IBUF[1 : 4, 0 : 2551 - assignable l ine in buffers
I10[1 : 91 eqv. I 1 0 . 1 1 1 , 1 1 2 , 113, I 14 ,115 , !16 ,117 ,

!18 - 3 X 3 n e i g h b o r h o o d

4. Ex tended state o f o the r variables for s tepping m o t o r

states:
M D P D A T A [! : 8, 1 : 12J - 12 s tepping m o t o r

double precis ion substates i

[1 : 2, i i l o w e r m o v e m e n t l imit
[3 : 4 , i l u p p e r m o v e m e n t l imit
[5 : 6, i ldes i red posi t ion l imit
[7 : 8, i l cu r r en t posi t ion l imit

MSLOW ! 1 : 121 - s low stepping m o t o r rates

MFASTI 1 : 1 2 J - fast s tepping m o t o r rates
MACTIVEIbi t s 0 : I I] - 12 s tepping m o t o r active bits

5. Twenty-six Q-registers and o ther a r i thmet ic variables:

ITMPSTK{1 : 261 - integer Q-registers low order
I Q R E G [I : 26] - integer Q-registers high order
GENSYM[1 : 21 - file name genera t ion variables

IA[I : 21, IC[1 : 21 - free variables
FA, FB, FC - free variables
IDMAX, IDMIN - free variables
IVAL[1 : 21 - free variables

an operator. It may include one or more operands

which may be buffer memory names and other

operands depending on the particular operator.
The BMON2 command line syntax given in table 5

in the form of a backus normal form (BNF) grammar.
Note that the ' - ' is the underline character and is
equivalent to a back arrow on some teletypes. It is
used to indicate assignment. The '<' character is
equivalent to the ' - ' in the OS8 environment. Fur-
thermore, if no output specification is required
'-right side of specification' is equivalent to 'right
side of specification'.

Buffer memories are specified as 'BMnh' where n is

Table 5
BMON2 BNF grammar

<cmd line):" = <cmd) (switches>
<cmd): : = <op>, (args~

:: = <filespec) _ ~op), <args)
:: = <filespec) _ <op>, (BM>
:: = <BM) _ <op>, <f'despec>
• - = <op>, <BM), <args)
:: = <BM) __ Cop>, <args'
• " = <op>, <BM), <BM>, <args>
--= <BM ~, <op), <BM>, <args~
"" = iBM> _ <op>, <BMs, <BM~,<args~
:: = <BM) _ <BM), <op'~, <BM>. ~args)

<Iilespec >:" = <device > • ~file name >. <extension name
<device):: = SYSIDSKBIDSKCtDSKD IDSKE IDSKI: IDSK(; I

DSKH IDTAOIDTA 1 ILPT
<file name>:: = GFNSYM 1(6 character a lpha-numeric identi-

fier beginning wi th le t te r)
<extension name>:: - (2 character a lpha-numeric i d e n t i f e r)

<args>:" = ~args>, <arg>l<arg>
<arg):" = decimal n u m b e r up to 4095

:" -" <knob >
• " = <control desk switch >

• " = <keypad)
• - = <Q-register)
:: - null

' knob~: : " P<octal digit> (Knobs 0 • 7 with values [0 • 511 J)
~controi desk switch):: " FBW<decimal digit) ~'control desk

switches 0 • 9 with values J0 " 4 0 9 5])

~keypad>: "= KDP (keypad values [0 " 999])

<Q-register):: = QR<let ter)
<letter>:" = AIBICI ... IYIZ
<op >:: = legal c o m m a n d
< BM):: = BM<octal digit ><byte >
<octal digit):: = 0 I1121314151617
<decimal digit >:: = <octal digit > 1819

<byte>:" = HILInuli
<switches>:: =]<letter >l](octal digit)l

:: - / S = <2 digit octal n Jmber)

32 P. Lemki,, L. Lipkin. BMON2 - Distributed monitor system

the buffer memory number and h denotes an optional
byte selector (h = null or "L" for low byte, h = 'H" for
high byte). The notation (BMi') (h' is the comple-
ment of h) denotes the other half of (BMi). So called
software (switches) are denoted by '/" followed by an
alpha-numeric character. Other parameters, denoted
(args), may also be specified. Note that (args) includes
decimal numbers up to 4095, Q-registers (see below),
physical devices such as: the 8 knob pots (Pi), the
control desk switches FBW1:9, and the keypad KPD
(numbers 0:999). Twenty-six specially named regis-
ters called Q-registers are available for the operators
(or the user) to pass integer parameters between oper-
ations. The syntax fi)r the registers is 'QR(letter)'.
The special symbol GENSYM may be used instead of
a file name to indicate that BMON2 should generate a
file name when referenced by incrementing a 4 digit
post fix number appended to a two character prefix of
the OS8 file name. A parser restriction prevents the
specification of both decimal integers and other
types of (args) in the same command line. This is

actually not that difficult a restriction since integers
may be stored in Q-registers.

L-I Slale to
~.ore

Stale Files)

Ma~n Lcop

_!

r f ' Yr°l _ r

[J
I '

I I P~ '~ ' I

i 1--c F ' Mole ~,Ji~, Cole
Siaqe ~ Comro! ~)-~--I State ,n O,a

I Stepioinq Motois I ~Sw,iches / i f,le~ State Ides
L " J ~ / 1

and dl5Oic!7 t ,. l
,n LEDS

Fig. 6. Top level BMON2 control flow.

3.3. Control s tr , cture

3.3.1. Top level BMON2 f low - command # l t e r -

preter

The top level BMON2 control flow is shown in
fig. 6. Upon starting, the program restores the
COMMON state from the disk state files. It then
enters a command input loop where operator inter-
vention is tested. Commands entered as teletype
strings are parsed (c.f., sections 3.2.2:3) and then
interpreted (c.f., section 3.3.4).

3. 3.2. Command ;,after

The PP, MON2 command parser is shown in fig. 7.
-rhe parser is embedded in the OS8 system by usin[,
its command decoder option. The command decoder
specifies a command as an output name followed by
a - followed by up to 5 i~iput names. Software
switches (as defined in section 3.2.4) may be used ~o
modifl, and/or parameterize the command line.

3.3.3. Results o f parsing a c o m m a , d l i , e

A command line can contain the following infor-
mation which is analyzed by the command decode-

L,.,o- /
Parameters IBM1. IHGH1

JHGH JBM IBNI2 ,HGH2
P41- 0 IMA IMB

MCOU~T*-O

~ . ~ , - - 1
'H°S/

/• [s~, ,~, , o . , e u j

~ I eMCOU~T,,--w /
Y I Set IMA IMB |

l~o IPosl I~,,~ tm m~ BM /

F Sel 2nd 'nI~'BM I
/ = " " - ~ ,esl pa,a-x.e.s /

. ~ I ,,',G.2',,--% [-
y [,BUCOuIIT4--2 j

'~o

~ ~ E V A L e F B W , I

lo

/VALIKPD!

EVALIPOTll r

Yes r ICNUMIla~-P i ~

~_-] l --

DO Efil_ ~

:04
Fig. 7. BMON2 command parser flow

P. Lemkbz, L. Lipkin, BMON2 - Distributed monitor system 33

parser subroutine BCDSPEC.FT ('B'MON2 'C'om-
mand 'D'ecoder 'SPEC'ification).

1. One output argument (denoted by a ' - " to its
right).

2. Up to 5 input arguments separated by commas.

3. Up to 36 switches (denoted as/A,/B, . . . , /Z,/0,
/ i , ...,/9).

4. Control desk command key assignment value speci-
fied as '=nn/S" where nn is the command key name
0-14 octal.

This information is parsed and appears as the follow-
ing Fortran COMMON variables:

1. KDEVOUT OS8 device, KOUTFILE[1:4] as 4A2
format.

2. KDEVIN[1 "5] OS8 devices, KINFILE[1:5, 1:4] as
5(4A2) format, or ICNUM[1:5] input arguments
which have values [0:4095].

3. ISW[1"36] asOor !.

4. MCD[39] as nn value.

traded off against possible ambiguity which however
is never allowed to produce a fatal error.

Further parsing is performed. The KOUTFILE
symbol is checked to see whether it contains a sym-
bol 'BM(digit)'. State variable JBM contains the digit
(0 if none) and JHGH contains 1 if the symbol ended
in an 'H' as in 'BM3H' indicating high byte. Similarly,
the 5 KINFILE symbols are checked front left to
right for 'BM(digit)' symbols. If one is found, it is put
into (IBM1, IHGHI) as for (JBM, JHGH). The sym-
bol is then removed from the KINFILE list and the
list compressed. This process is repeated up to one
more time in order to find the possible second input
operand in (IBM2, IHGH2). The KINFILE list is then
searched left to right for symbols which represent
scalar values such as pots PO, PI, ..., P7; switches
FBW1, FBW2, ..., FBW7; the keypad KPD and
Q-registers QRA, QRB, ..., QRZ. if a symbol is found,
it is removed as before from the KINFILE list and the
corresponding device or register evaluated and the
value stacked in the ICNUM list. Finally, the symbol
left in the KINFILE[!, 1:4] array (leftmost symbol)
will by definition be the operator. The parser thus
reduces the command line to an operator prefix form
(as in the LISP language) for easy evaluation. For
example, in the following command where pots 0 and
1 have the values 123 and 234 respectively, the global
parse variables arrays are defined as:

5. MCD[1:36] - initial command string in 36A2 for-
mat.

A few examples will be given here to illustrate the
characteristics of the command decoder parser.

Z - A, 3, B,4

or

Z - 3,4, A, B

are parsed into the global parse variable arrays:

Index KOUTFILE KINFILE ICNUM

1 Z A 3
2 B 4

Thus it is clear that the position of numeric argu-
ments is not critical and that they may be mixed with
non-numeric arguments. Syntax insensitivity is thus

BM2H-SLICE, BM 1, PO, P1

Index KOUTFILE KINFILE ICNUM

1 (null) SLICE 123
(null) 234

JBM/JHGH IBMI/IHGHI

2/1 1/0

Other state variable changes are noted such as check-
ing whether the variable frame TV overlay is within
the first input BM if the/U switch is specified. The
variables (KXI :KX2, KYI :KY2) are set to the rela-
tive computing window values. Otherwise, they are
defaulted to (0:255,0:255).

3.3.4. I n t e r p r e t e r - bui l t in /external evaluation

Figure 8 shows the control flow of the BMON2
interpreter. External operators such as SEGBND,

34 1°. Lt, mkh t , L. Lipkht , B I ION2 - Dis tr ibuted mon i to r s y i t e m

r , Error Messam,]

J OPR ~ }
KINFILE t 1J

J

"] r~o

DSKA::o

Case ot
Indel(OPRI

OPR.SV

Of

Cask I

~_.~ll 01 [!

Copy F~!e
dewce OPR"SV

Io
SyS dur+k.SV

OPFb4- Junk
(|ovlt:t,q~ ~¥5

Svs '

Y~5

C -t I
Chd,,' t , ' }

_.-- E.re,nal
(]Detd~or

~e~,ce OPR.Sv :

L _ _ J

I P,m T,m I
tot I

I ~,o .c . , ,o . J

T

l'ig. 8. BMON2 imcrprctcr flow.

EXTRACT, ZOOM etc. are implemented aschaiueci
OS8 '.SV" core image files. When one of these is
called, the state ol BMON2 (including the parsed
command line) is saved in system (SYS:) disk files
(SVDDTG.DA. SVBMON.DA) before the chain is
executed. The operator segment, on being started, has
the option of restoring the state of BMON2 from
these files or assuming that the state is left in COM-
MON. I| then uses the Farsed argument specifications
in COMMON. After it performs the operation, it has
the opti .n of saving the new state of BMON2. It then
,-basins back to BMON2. The chain operation is per-
formed by BMON2 as follows in algorithm B.

Algorithm B. Operator evaluation

1. The operator is checked against a list of inter-
nal BMON2 operators. If it is an internal opera-

tot, it is executed within BMON2.
2. An unknown operator (potential CHAIN oper-

ator) X is looked up on the SYS: as
'SYS:X.SV'.

2.1. If it is found, then the state of BMON2 is
saved, and the system chains to SYS:X.SV.

2.2. If X is not round, then BMON2 searches the
rest of the disks in the following order: DSKB,
DSKC, DSKD, DSKE, DSKF, DSKG, and
DSKH. ~.ny disks off line are .n/~: searched.

" 1 Ifi., is found on any t,~""~,,,.. -~ disks then X.SV
is copied to SYS:JUNK.SV file and the system
chains to SYS:J~NK.SV. ~

"~ "~ If X is not fi~und, an error message '?X.SV' is
priqted and control rciurnz !,~ wait for the next
command at the BMON2 level.

This mechanism thus permits an operator to be
added o~ del~:ied flora the BMON2 system by simply
auumg to (removing) from the PDP8e computer sys-
tem disk packs with the operator program segments
on them. (lhe system Das a total of 4 dual surface
disk drives.)

3. 3.5. Distributed svntav checking
A major advantage of the DMS concept is that the

peculiar syntax and semantic needs of a particular
operator can be built into the operator ~tself. in par-
ticular, requirements as to BM specificaiions, disk
usage, etc. may be checked at the operator level.
Three internal subroutines are commonly used by
many of the external operators: i.e., CKOUT. CKIN,
and CKIN2. The first checks fi)r an output BM speci-
fication by parsing the output symbol for 'BM' fol-
lowed by a digit. CKIN does the same for the first
input BM symbol. CKIN2 does a CKIN and
checks for the existence of the next BM input sym-
bol. For example, applying CKIN2 and CKOUT to
the parse string

'BM2 _ BMO, ADD, BM 1'

would be successful. Additional semantic checks may
be made. as for example checking whether the input
BM name is different from the output BM name, etc.

3.4. AdCbtg new external operaters to BMON2

Once again, our implementation of the DMS con-
cept makes the addition of new external operators to

P. Lemkin, L. Lipkin, BMON2 - Distributed moni tor s.vstem 35

the BMON2 system, easy and with few if any unfor-
seen complications. This feature permits programs
(such as BMON2 or the external operators them-
selves) to run other programs by requesting through
the OS8 monitor. The external operators are pro-
grams, OS8 core image (OS8 .SV extension) f'des,
created by compiling, loading and saving the pro-
grams. As noted in section 3.2.3 the critical compo-
nent of interfacing these new operator programs to
BMON2 is in saving and restoring the state informa-
tion and the operator programs themselves.

Most new operators are created by taking the skel-
eton from an existing procedure of a similar type and
changing the kernel of the procedure to perform the
new operation (c.f., section 3.2.2). Each external
operator has a prologue to restore the state and an
epilogue to save it and chain back to BMON2. The
external operator uses the COMMON declaration file,
BMCMN.FT, during compilation so that any opera-
tions requiring COMMON will have it available.
Actual BM I/0 may be performed either using
BMIO.FT or BMOMNI.FT (c.f., section 3.1.2).

3.5. The class of macro expansion batch operators

There has evolved a special calss of BMON2 opera-
tors quite different from the usual picture ooerator,
the macro expansion batch operator. It is character-
ized by its use; namely to expand a set of parameters
into a batch job for running BMON2. Currently
3 operators are in this group: APPLY, MAKLST and
MAKCMP.

APPLY takes a template batch job and a set of
parameters and does a simple parameter replacement
and batch job submission. MAKLST is used to restore
to the 3 scratch disks a list of 2-dimensional electro-
phoresis gel images from a set of magnetic tapes. It
uses information stored in a data management file,
GEL.DA, regarding picture names and magtape vol-
umes where gel images are stored indexed by gel
accession number. MAKCMP is also used in the
2.dimensional gel analysis to generate batch jobs for
defining landmark spot sets (a landmark spot in a
2-dimensional gel is a well defined polypeptide spot
identifiable in several gels). It is also used to pair
spots between gels for a number of gels taken two at
a time in a batch mode.

4. Annotated example of a BMON2 run

Appendix B shows the BMON2 operation
sequence used in a batch job to acquire and pre-
process an electron micrograph of nucleic acid mole-
cules. The object of this sequence is to: acquire a
field from the TV/micrograph input system; pre-
process it preparatory to segmentation; segment it
into a file consisting of a set of boundaries; post pro-
cess this file into a set of edited boundary data files
which are then saved on magnetic tape.

Steps ! - 3 define the sample window to be
scanned. Step 4 acquires the image at 2× magnifica-
tion and then smoothes it by averaging and reducing
it to 1X size. Step 5 complements the image so that
the strands are black (since we are working with nega-
tive film input. Step 6 low pass filters the image to
remove the effect of shading error in the image. Steps
7 -9 find the threshold and slice the image such that
the image consists primarily of strands and noisy
blobs. Major gap repair is done where possible in step
10 using an interactive Graphpen to edit the image.
Small non-linear blobs are removed in step 11. The
image is segmented in step 12 and separate boundary
data files created with marked endpoints in step 13.
Finally the boundary data files are saved on magnetic
tape in step 14.

5. Discussion

5.1. How DMS implementation helps image pro-
cessing user

In solving a problem, one often breaks larger u, .
sol red problems into smaller solvable problems. A
DMS permits an investigator to create and test, inde-
pendent of the requirements and state expectations
of the rest of the system operators, new operators in
an attempt to solve these subproblems. Because of
this independence, creating new operators is relatively
easy. By accumulating experience with sequences of
such operators, more compact and efficient 'repack-
aged' operators embodying the same sequence of
operators can then be created, which may and fre-
quently do evolve into what we have termed very
large operators,

36 P. Lemkbl. L. Lipkin, BMON2 - Distributed monitor system

5.1. I. Minhnum "wimlow'of system knowledge
required lbr e~tension

The software interface between the DMS and a
particular operator is known as the window (some-
what similar to the concept of gateway used when
discussing spheres of protection in time sharing sys-
tems). It may be thought of as two funnels connected
through the narrow ends to each other. The window
actually consists of a subset of the state variables. A
minimum window size is desirable in order to maxi-
mize the ease of understanding this interface. By par-
titioning the state ir~to substates, only those substates
actually used need be understood. This requires an
understanding of t !~ e classes of substates which exist
and oniy then detailed knowledge of those of inter-
est. At the user level again, this strategem minimizes
the demand on the user to learn new system features
in order to use the new operator.

5. I. 2. Concept ol'ievels o f attention - substates
Because each operator requires only a subset of

the total state and because these substates are often
able to be partitioned, substates can be treated both
conceptually and phydcally as separate entities. This
leads to relatively simple and efficient data structure
implementations. A further advantage is the small
number of state variable~ L programmer has to con-
tend with in a subs~ate. This makes learning and using
a particular subszate relatively easy.

5.2. Extensibility o f DMS concept to time-shared sys-
tems.

The.re is nothing inherent in the DMS design con-
cept which prevents its being used in a time shared
environment. In fact we are in the process of building
such a structure. The DMS corcept should be easily
transferred to a time shared system such as for exam-
ple the DECSYSTEM-IO or -20. The DMS master pro-
gram, (i.e. 'BMON20'), should be a shared re-entrant
program. Each user would create, upon first using
BMON20, his own copy of the major state file in his
own disk file region. Thus multiple users could use
the system simultaneously. As operators were
invoked by users which require additional substate
files, these files would be created and that user's
major state file modified t,_~ reflect this change.

Searching for the external operator program files

could then be done in a more extensive environment.
For example, BMON20 might firs~ search the user's
disk file structure for the special operator. If this
search fails, it might then search a special DMS
system-wide structure fi~r the operator. A useful
extension to the command syntax might be to em-
ploy an external operator from a specific user's disk
area. This facility would let several users try an oper-
ator under development before it is finally put into
the DiMS f'de area for general use.

As an added benefit of a DMS, unnecessarily large
programs modules consisting of a set of operators can
be broken down into smaller modules and still be
linked together in a reasonable way through the DMS.
The effect of developing a werki,ng set of these
smaller modules reduces physical core demands
although at the added expense of more paging and
disk storage. The paging expense however can be held
to reasonable limits by careful design of the modules.

5.2.1. Substate #nplementation atld i:s hnplications
Since it is impossible to completely define the

major state file during the initial system design, a
facility must be built into the system to allow the
extension of the state during system development.
This is done by setting aside a re~,i:,n 9f the state
space itself which points to the extensions of the
state resident on disk files. These extensions could
consist of lists of 2-tuples: (substate file name, sub-
state attribute). Part of the attribute list would be the
name of the author of th~ iew substate, in order to
uniquely define it. Such an attribute could then be
used to uniquely label the substate, enabling an oper-
ator requiring the substate tt~ find it. Thus a user not
requiring many substates would have a minimum
number of auxiliary substate files and minimum over-
head. Furthermore, each user would have a unique set
of these substate files tailored to his particular use of
the system. Overhead in accessing substates could be
reduced by maintaining a demand paging region in
the state for the current substate.

Flexibility in substate structures allows for 'lean'
but understandable major states. Passing the major
state between DMS programs could be done either
through disk files or through one of several interpro-
cess communication mechanisms available for passing
messages through core memory (e.g., in TOPS-IO sys-
tems TMPCOR files, IPCF, pseudo teletypes). In

P. Lemkin, L. Lipkin, BMON2 - Distributed monitor system 37

either case, the state must eventually be backed up
pelmanently on disk files. An appropriate time to do
this is when there is a 'significant' state change affect-
ing long term operation, such as when a new substate
is created or deleted.

5.2.2. Requirements 1"or allocation o f frame buffer
resources

As was discussed in section 3.1, certain types of
picture memory 1/0 operations are quite often used.
A similar situation occurs in attempting to perform
picture processing in a time shared environment.
However, further complications arise because of the
allocation of precious frame buffer hardware
resources. One solution is to restrict image processing
on the system only to the user currently 'owning'
the frame buffer resource. Clearly, this is an inade-
quate solution. A better solution would be to require
all frame buffer interaction to proceed through a
'gateway' procedure which would (1) in the case of
owning the frame buffer, use it directly, or (2) in the
case of nat owning the frame buffer, simulate it as a
set of disk files. We believe that the latter solution
would enable many more users to take advantage of
the system without extravagant use of system disk
resources. This 'gateway" procedure could also be
responsible for communicating with the hardware
frame buffer's own CPU for performing offline image
operations.

This gateway program would appear to be similar
to BMOMNI in BMON2 but with the various neces-
sary extensions required for a time shared environ-
ment. Among these would be the ability to ASSIGN
and DEASSIGN (as in the DECSYSTEM-IO monitor
command) a buffer memory handler and RTPP con-
troller. Once assigned, a device could not be accessed
by other users even though no program may be cur-
rently using it (as is the case which occurs during
chaining between DMS modules). Return of a device
to the available pool may be made automatic or as an
explicit courtesy to other users.

In summary, the types of frame buffer I /0 for
both the byte and word size pixels typically involved
are: pixel; neighborhood; line; image; boundary list.
The neighborhood I /0 should allow the user to define
a neighborhood (typically n X n square) and have the
system set up n-line buffers (and maintain them) to
do the actual I/0. The latter should be transparent to

the user. As an extension, a direction list neighbor-
hood definition could be specified, as well as giving
offsets relative to a center with the center specified
as absolute coordinates. This would permit arbitrary
neighborhood definition. The packing of images in
core should be convenient for rapid access for pixel/
line operations. This may necessitate maintaining two
sets of line buffers in core, one packed and the other
unpacked.

If several non-refresh type displays are available to
time sharing, it should be possible to use these to
interrogate the picture memory. Although not as
desirable for most applications as a refresh gray scale
display, they would permit wider use of the system.
This interaction can be facilitated by adding a new
operator, SHOW, with the following syntax.

display type - SHOW, BM, (display window)
I

The display window may be defaulted but is certainly
a function of the type of display used and its gray
scale simulation mechanism.

Another useful change would be to allow the
mixing of picture files with BMs in the command
specification. For example, the following sequence
can be replaced with a much simpler one if display of
the data is +aot required.

BM0 - READ, A.PIX
BMI - READ, B.PIX
BM2 - BMO, ADD, BMI
C.PIX - WRITE, BM2

may be replaced by:

C.PIX - A.PIX, ADD, B.PIX

5.2.3. Extensions to the syntax
There are no inherent limitations to extending the

syntax. However, the side effects of any extension
should be carefully weighed. For example, the addi-
tion of other data structures (such as lists) to the
state would either have the effect of enlarging the
state (bad for routine clmining) or of requiring their
accession through a substate (less efficient during
usage but probably preferable over the long term).
Algol style control block-structure type syntax would
be desirable but must be implemented in such a way
so as to minimize the problems just discussed, possi-

38 P. Lemkin , L, Lipkin. BMOA'2 - Distributed moni tor sys tem

bly using a control stack. Since the operators are not
known until evaluation time, any control stack data
structure might contain the actual string names a~ an
efficient coding mechanism.

Another useful extension would be to allocate a
small number (possibly on t~le order of 3 0 - 5 0) user
defined scalar variables to replace the Q-registers
which are difficult to remember. The new syntax
might to be preface the symbol with a '%" as in
'%AREA'. A fixed region in the major state area
could be allocated for the set of 2-tuples (%variable,
scalar value) constituting the use~ variables.

6. Conclusion

We have detailed an instance of a distributed pic-
ture processing monitor system. The advantages of a
DMS for interactive use by non-programmer users are
indicated. The further advantages of a distributed
monitor system in both adding and maintaining large
numbers of large new operators are enumerated. The
extension o, ~ the distributed monitor system concept
to a time sharing environment in the context of a
large main frame is outlined.

Acknowledgements

. Image display and acquisition operators:
GET - acquire TV images into buffer memories
SMPGET* - acquire 512 X 512 image sampled/
averaged to 256 X 256 BMs
FSTGET, - acqui~:e 16 BM sequential images at
current F and S
POST - post BMs on the TV display
UNPOST - unpost BMs from the "IV display
POSXYBM - position a BM by (x, y) position on
the display
POSFSBM - position a BM by window position
on the display
SETFSXY - set the window position by (x, y)
values
SETFSBM - position the window over the speci-
fied BM
SETFSREL - position the window relative from
one BM to another
FINDFS, - find the minimum enclosing window
in a BM
STDBM - set the standard BM positions on the
display
ALL384 - set all BM positions to the center of
the LCS
SHOWMOVIE, - show a specified sequence of
BMs repeatedly
GELMVI, - show two 512 X 512 images with
camera control

We wish to thank Bruce Shapiro, Earl Smith and
Morton Schultz for useful discussions on the DMS
concepts and their extension to the time share envi-
ronment as well as useful criticism of" the sections on
BMON2.

A p p e n d i x A - Lists o f B M O N 2 opera tors b y group

The set of BMON2 operators are most easily
understood if they are functionally grouped. In the
list, those followed by a ' , ' are external operators
while the others are built into BMON2 proper. The
function of a given i:~dividual operator is often appar-
ent from its name. Detailed description of its opera-
tion is found in the user's manual [10]. Those opera-
tors whose aigorit|uns were obtained from specific
papers are referenced as such.

. Image input/output operators:
WRITE* - write BM(s) to OS8 devices
READ, - read BM(s) from OS8 devices
WINDMP, - print the decimal values of the BM
window

MAGIO* [71 - magtape file utility
PIXMTA, - BM(s) data acquisition to magtape
REVIEW, - magtape image files to BM(s)
BNDPRINT, [15] - boundary analysis and dis-
play
CAMERA, - automatic camera control

3. Control desk:

CMDKEYS - print command key assignments
SAVCMD - save current command key assign-
meat in a file

RSTCMD - ~estore command key assignment
from a file

I: L e m k i n , L. L i p k i n , B M O N 2 - D i s t r i b u t e d m o n i t o r s y s t e m 39

4. State initialization and state inquiry:
I N I T - initialize the BMON2 state or substates

E X I T - exit BMON2 back to OS8 saving the state
PARAMETERS - print state or substate parame-
ters
SETGENSYM - define the file name generator
LOADQR - load a scalar into a Q-register
EVAL - do scalar arithmetic
HELP, - search a document file for command
information

OPENFILE - start spooling BMON2 output
CLOSEFILE - stop spooling BMON2 output
MOVSTATE, - move the microscope stepping
motors by value

5. Auxilliary programming:

BATCH -- submit an OS8 batch job from BMON2
NOBATCH - turn off OS8 batch if it is on
APPLY,.: - create a batch job from a macro file
and parameters
SETIO f -- execute the PDP8e I / 0 instruction with
parametez

6. Synthetic image operators:
COLOR - assign a buffer memory a specified gray
value
ZERO -- zero the buffer memory
GRAYBAR -- fill a BM with a graybar (i 6 step log

or 256)

T E X T -- draw a teletype specified text message in

a BM
GRID - draw a grid of size N X Nco lo r G in a BM

WHITENOISE - color a BM with white noise

7. Unary image point operators:

COPY - copy a BM into

COMPLEMENT - complement a BM

C O N T R A S T - contrast stretch a BM

DEFCONTRAST, - draw a contrast ft~.nction
with the Graphpen

F N C O N T R A S T , - apply the contrast function to
a BM

SCALE - scale a BM using a linear transformation
SLICE - threshold slice a BM
SHIFT - translate a BM in (x. y)
ROTATE, - rotate a BM a specified angle

.

.

Neighborhood unary image operators:

ZOOM, - magnify a window in BM(s) by repeat-
ing pixels

AVG8 - 8-neighbor average a BM window
AVGN* - N × N average a BM window
MIDPOINT, -- 3 X 3 midpoint filter a BM window
MEDIAN, - 3 X 3 median filter a BM window
LAPLACIAN - 3 X 3 Laplacian filter a BM win-
dow

GRAD4 [27] - 4-neighbor gradient of a BM win-
dow

EDGE [27] - 3 × 3 edge filter a BM window
GRADN, - N × N neighborhood gradient a

BM window

MTV, [23] - 3 × 3 MTV filter a BM window
VARIANCE* - 3 X 3 variance filter a BM window
GRAD8, - 8-neighbor gradient of a BM window

F I L T E R , - direction list filter a BM window

FILLPINHOLES - fill pin holes in a BM window
CIRCLE - copy a circular BM window
RECTANGLE -- copy a rectangular BM window

PROPAGATE* - propagate a BM window
PROP2, - propagate a BM window
RUNFILTER* - run length filter a BM window
NGHSE, - gray scale shrink/expand a BM win-
dow
NOTCH* [19] - notch filter a BM window
NCHSI2 , [19] - notch filter a 512 X 512 BM

window
FILGAP, - gap fill a BM window

Point binary image operators:
ADD - pixel by pixel add two BM windows
SUB - pixel by pixel subtract two BM windows
MUL - pixel by pixel multiply two BM windows
DIV - pixel by pixel divide two BM windows
AND - pixel by pixel bit-AND two BM windows

OR - pixel by pixel inclusive bit-OR two BM win-

dows
MAX - pixel by pixel maximum of two BM win-

dows
MIN - pixel by pixel minimum c f two BM win-

dows
DIFF - pixel by pixel absolute difference of two

BM windows
ISOLATE [1 6] , - region isolation of connected

component image and gray scale image
SHADE, [24] - shade correct a BM window

40 P. Lemkin, 1.. Lipkin, BMON2 - Distributed moni tor sys tem

I0. St,~tistical display operators:
HIST --compute the gray scale distribution of a
BM window
SilOWHlSTOGRAM - display gray scale distribu-
tion in a BM
SMOOTHlSTOGRAM* [261 - smooth a gray
scale distribution
PLOT2D, - plot two BM windows in a third BM

I 1. Line drawing operators:
GRAPHPEN - edit a BM with a Graphpen
EXTRACT, - extract BM measurements with
drawn boundaries
DRW512, - edit a 5 i 2 X 512 BM image with
Graphpen
BDEDIT, [25] - edit a boundary data file over-
hying a BM image
BTT* [12] - compute the boundary trace trans-
form in a BM

12. Segmentation operators:
SEGBND, [! 1,22] segment a BM into a set of
boundaries and a connected component (CC) BM
image

SEG2PS, [22] - segment a BM window into a CC
BM image
SEG512, [18,22] - segment a 512 × 5!2 BM
window into a CC image
RMVBLOB, [14] -- remove compact blobs less
than size N
DYNBND, - dynamic boundary follower

13. Scalar measurement operators:
AREA -- compute area of a BM window
DENSITY - o~mpute the density of a BM window
P E R I M E T E R compute tile perimeter of objects
above threshold in a BM window
SUIVIDIFF - compute the sum of the differences
of two BMs

COMASS, - compute tile center of mass of the
BM window data

PTILE, [22] - compute the N'th percentile of
current histogram

TOTDENSITY, [18] - c o m p u t e the total density
and background of 512 X 512 image

14. Quantimet function operators:

QDATA - acquire data from the QMT function
computer hardware

LOADTHRESHOLDS - load the detector module
threshold values

15. Texture measurement operators:
RLTEXTURE, [5] - c o m p u t e run length texture
features of BM window
JGSTXTURE, [21] - compute joint gray scale
texture features of a BM window
JGSPLOT, [21] - compute and display joint gray
scale texture features of BM window

16 .3 -Dimens iona l reconstruction operators:
RECONSTRUCT, - recons t ruc t projection from
serial sections

17. linage comparison operators:
FLICKER, [17] - flicker analysis of 2-dimen-
sional gel images

SCANSPOT, [18] - canonical spot data manage-
merit system

MAKLST, [18] - image accession number data
management system

CMPGEL, [18] - g e l spot list comparison system
MAKCMP, - generate batch jobs for CMPGEL
use

Append ix B - Sample BMON2 run

The following batch job will acquire and prepro-
cess a number of nucleic acid molecules from elect'con
micrographs of film. The result is a set of boundary
data files suitable as input to a molecule analysis pro-
g r a m [19,25] running on a DECI0.

S JOB MOLECULES.BI - ACQUIRE, PREPROCESS
NUCLEIC ACID MOLECULES

.R BMON2

/1. Initialize system and unpost any images currently
posted

*INIT/A
/
/2. Set frame size to 512 X 512
*SETFSXY, 1,1,512,512
/

$MSG - POSITION THE SAMPLE FRAME OF
IMAGE TO BE ACQUIRED

/3. Position BMs at frame cunently set interactively

P. Lemkin, L. Lipkh~, BMON2 - Distributed monitor system 41

,INIT/B
/
/4. Acquire a 512 X 512 image at the current window
/and average it to a 256 × 256
,BM0-SMPGET/A
/
/5. Complement the image into itself
• BM0-COMPLEMENT, BMO
/
/6. Low pass filter the image to remove most of the

shading
/error using a 32 X 32 window in a notch filter and
/compute the lowest background value automatically
,BM3-NOTCH,32/A
/
/7. Compute the gray scale distribution of the image

and
/display the distribution in BMI
*BMI-HISTOGRAM,BM3
/
/8. Compute the 75'th percentile of density values of

the
/histogram which will then be used to generate a

noisy thresholded
/image of the molecules
,PTILE,75
/Note: The gray value corresponding to the 75'th

percentile
/is stored in QRC
/
/9. Slice the image in BM3 back into BM0 at thresh-

old QRC
/through 255 (black)
• BMO-SLICE, BM3, QRC
/
/10. Do gross image editing. Fill major gaps if

required
*BMO-GRAPHPEN
/
/11. Remove blobs <20 pixels in radius in 2 passes
/Leave larger blobs intact
• BM 2- RMVBLOBS,BM0,10
*BM0-COPY,BM2
• BM2-RMVBLOBS,BM0,10
/
/12. Segment the image into separate molecules

b,3undaries
/First set up the boundary data file name generator to

/generate the boundary data file (BDF) name
BD0001

/Size objects by perimeter in the range of 150:2000
pixels

*SETGENSYM,BD,0
• BMI -SEGBND,BM2,150,2000/T/L/N/B/1
/
/13. Edit a single BDF list of boundaries (removing

hairs
/and marking endpoints) into a set of BDFs

BSO001 .DA,
/BS0002.DA, etc.
/Each time a boundary for the BD0001.DA BDF is

edited,
/it is overlayed in black in BM0 on top of a fresh

copy of
/the gray scale original image in BM2
• BM0-BDEDIT,BD0001 .DA,BS,0001 ,BM2
/Note: The endproduct is a set of marked molecule

boundaries on
/the disk
/
/14. Dump the final set of boundaries on magtape

and then
/delete them from the disk
SMSG - MOUNT MAGTAPE: REWIND, PUT

ON-LINE, RING IN, ON UNIT 0
• MTAO :-MAG 10,BS????.DA/D, BMON2
SEND MOLECULES.BI

References

[I] E. Bengtsson, J. Holmquist, B. Olsen and B. Stenkvist,
Comp,lt. Progr. Biomed. 6 (1976) 39.

121 J.F. Brenner, S.B. Dew, J.B. ltorton, T. King, P.W.
Neurath and W.D. Selles, J. Histochem. Cytochem. 24
(1976) 100~

[3l G. Carman, P. Lemkin, L. Lipkin, B. Shapiro, M.
Schultz and P. Kaiser, J. Histoehem. Cytochem. 22
(1974) 732.

141 Digital Equipment Corp., OS8 Handbook (M~yr~ard,
MA, 1974).

151 M. Galloway, Comput. Graph. Image Process. 4 (1975)
172.

[6] P. Lemkin, (~ Carman, L. Lipkin, B. Shapiro, M.
Sehultz and P. Kaiser, J. Histoehem. Cytoehem. 22
(1974) 725.

171 P. Lemkin, MAGIO - A PDP8e file based magtape util-
ity. NCI/IP Tech. Rep. 20 (Nat. Tech. info. Serv.
PB261534/AS (or DECUS 8-879), Dec. 1976).

42 P. Lemkht, L. Lipkhl, BMO,V2 - Distributed monitor system

181

[91

II01

1111

1121

1131

1141

[151

[161

[171

I'. Lemkin, BMOMN! l:ortran interlace prugram G,r
the RTPI' buffer mcm(~ry, quantimet and control desk.
NCI/IP Tech. Rep. 23 (Nat. Tech. Info. Scrv.
PB261538/AS, Dec 1976).
P. Lemkin, (;. Carman, L. Lipkin, B. Shapiro and M.
Schultz, Real time picture processor - Description and
specification. NCi/IP Tech. Rep. 7a (Nas. Tech. lafo.
Serv. PB269600/AS, June 1977).
P. Lemkin, Buffer memory monitor system for inter-
active image processing. NCI/IP Tech. Rcp. 2 i b (Nat,
Tech. lnfo. Scrv. PB269642/AS, June 1977).
P. Lemkin, Bone marrow smear image ar~alysis (PhD
Dis. Univ. Maryland, College Park, MD, 1978).
P. Lemkin, Comput, Graph. hnagc Process. 9 (1979)
150.
P. Lcmkin and L. Lipkin, Anal. Ouant. Cytol, J. I
(1979) 67.
P. l,emkin, B. Shapiro, L. Lipkin, J. Maizel and J.
Sklansky, Preprocc~sing of electron microgruphs of
nucleic acid molecules for automatic analysis of com-
puter, ii, Noise removal and gap filling, Comput. Bio-
reed. Rcs. (1980)in press.
P. Lemkin and L. Lipkin, Splitting touching nuclei in
clusters of bone marrow smear cell images, Anal.
Quant. Cytol. J. (1980) in press.
P. Lemkin, Comput. Graph. linage Process. I0 (1979)
281.
P. Lemkin, C. Merril, L. Lipkin, M. Van Kcuren, W.
Ocrtcl, B. Shapiro, M. Wade, M. Schultz and F. Smith,
Software aids for the analysis of 2-D gel clcctrophoresis
images, Comput. Biomcd. Rcs. (I 980) in press.

1181

1191

12oi

!211

[22]

[231

[241

1251

1261

1271

1281

P. Lemkin, L. Lipkin, C. Merril and S. Shifrin, Protein
abnormalities in macrophages bearing asbestos, Env.
Hearth Persp. (1980) submitted.
L. Lipkin, P. Lemkin, B. Shapiro and J. Sklansky, Com-
put. Biomed. Res. 12 (1979) 279.
N. Nilsson, problem-solving methods in artificial intelli-
gence (McGraw Hill, NY, 197 !).
N.J. Pressman, Optical texture analysis for automatic
cytology and histology: A Markovian approach (PhD
Diss., Lawrence Livermore Lab., UCLA, Report UCRL-
52155, Oct. 1976).
A. Rosenfeld and A. Kak, Digital picture processing
(Academic Press, NY, 1976).
B. Schachter, L. Davis and A. Rosenfeld, Some experi-
ments in image segmentation by clustering of local
feature values. Pattern Recog. (1980) submitted.
M. Sehultz, L. Lipkin, M. Wade, P. Lemkin and G. Car-
man, J. Histochem. Cytochem. 22 (1974) 751.
B. Shapiro, Biological shape description (PhD Diss.
Univ. Maryland, College Park, MD, 1978).
K.T. Smith, D.C. Solmon and S.L. Wagner, Practical and
mathematical aspects of the problem of reconstructing
objects from radiographs (Address to Far West Section
Meet. Am. Math. Sot., Monterey, CA, April 1975).
H. Wechsler and J. Sklansky, Automatic detection of rib
contours in chest radiographs. 4th int. Joint Conf.
Artif. Intel. (1975) 688.
G. Wied, G.F. Bahr and P.H. Barrels, Automatic analysis
of cell images by TICAS, in: Automated cell identifica-
tion and cell sorting, Wied, G. et al. ed. (Academic
Press, NY. 1970).

