
Computer Programs in Biomedicine 11 (1980) 21-42 
© Elsevier/North-Holland Biomedical Press 

BMON2 - A D I S T R I B U T E D  M O N I T O R  SYSTEM F O R  B I O L O G I C A L  IMAGE P R O C E S S I N G  
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This paper presents an example of a distributed monitor system, BMON2, which was developed and is in daily use in a biologi- 
cal image processing environment. Some useful aspects of such a system are discussed, particularly those which make tbr easier 
biologist-user interaction and system extensibility. The principles of extension of the distributed monitor to a time-shared com- 
puter system is outlined. 
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I. Introduction 

The biologist, employing an interactive image pro- 
cessing system expects (1) an extensive repertoire of 
image processing andr I /0  procedures which are sim- 
ply and easily invoked and (2) the ability to more or 
less freely combine such procedures into complex 
sequences of operations and interactively apply them 
to stored images. In pursuing his or her objectives of 
biologically significant and useful results, the biol- 
ogist is intolerant of restrictive syntax and fatal errors 
which return him to ground zero. He is particularly 
resentful of constraints in the use of procedures 
which only become appar~ at when the procedure is 
part of a sequence. The biologist user tends to want 
to learn only so much about the system as is neces- 
sary for the solution of his problem. It is advanta- 
geous if his progression in the interactive develop- 
ment of sequences of effective procedures results in 
only minimal demands on him for additional system 
and syntactic information. 

BMON2, a general purpose image processing sys- 
tem, evolved in large measure in the response to our 
experience of the biologist user's needs and behav- 
ior. Its repertoire of procedures, and some of its 
interactive characteristics parallel in part such inter- 
active acquisition/processing systems as TICAS [28], 

SCANIT [2], and SCANSCANS [ 1 ]. Several signifi- 
cant differences, in system philosophy, in system 
design and in the principles of implementation when 
taken together make BMON2 quite unusual as well as 
particularly useful. Of these features, the distributed 
monitor concept, the concept of major states and 
substates, very large operators, the ease of addition of 
external procedures, the role of distributed syntax 
checking, and the user transparent multilevel image 
referencing will be presented here in more or less 
detail. The extension of BMON2 principles to a time 
sharing environment will essentially complete this 
paper. References to actually embodied image pro- 
cessing procedures will be minimal and only sufficient 
to convey the flavor of system operation and its 
design. Detailed descriptions of these operators may 
be found in the BMON2 reference manual [ 10]. A 
sample of a complex sequence of BMON2 commands 
will also be given. 

1.1. Requirements for image processing o f  biological 
images 

The general class of biological images covers a wide 
range of image characteristics. Even within the group 
of X-rays alone the disparities in say, image contrasts, 
between a skull series and a plain film of the abdo- 

21 



22 P. l.rmkin, i.. Lipkin. B.IION2 Distributed monitor system 

men is not only visually striking but in part deter- 
mines the kinds of processing that may be easily 
attempted. It is truism, of course that the "menu" of 
image processing procedures available in a given sys- 
tem in large measure reflects the kinds of images to 
be analyzed. In that regard, the repertoire of proce- 
dures in BMON2 reflects the (largely fortuitous) fact 
that the images with which we deal ('cells and tissues, 
electron micrographs of nucleic acid strands, and I- 
and 2-dimensional electrophoretic gels)are despite 
their varied origin, all characterized by relatively low 
contrast and by a moderate to marked degree of com- 
plexity. Classes of images such as these are particu- 
larly appropriate fi~r strategies inwflving the stepwise 
experimental applicati~m of successive pro,:edures to 
achieve a given analytic end. 

The scope and range of the procedures that survive 
(in a Darwinian sense)in a system such as BMON2 
also reP, ect the relative sophistication ~f the analytic 
~bjectives of !he users. The same secti~'.n of neural tis- 
sue can be re;,arded as the subject fi~r a count of neu- 
rons in the sa,nple, or on the other h:~n,j it may be 
viewed as one of a set for the establishment of sub- 
regions, i.e., the data are viewed ii| terms of p~;ential 
correspondences and/or similarities of structu:e. In 
our material, establishment of correspondences 
between similar possibly temporally, spatially or 
ontogenetic related samples is a common theme 
among several of the major classes of images with 
which we deal. Some of the very large operators (see 
FI.ICKER and CMPGEL) developed for this system 
reflect this common interest ~,hich transcends a 
diversi:y of picture types. 

All of those images mentioned are, to repeat, char- 
acteristicaUy low contrast, complex images, in design- 
ing alg~)rithms to process them. it is useful to be able 
to expeciment with various image processing proce- 
dures tn~der step by step control. Such inieraction 
greatb f~cilitates algorithm development. This type 
of interaction, however, requires that the develop- 
ment system have an easily learned, simple and logical 
command structure, it should also reflect the higher 
level picture operations, data structures, and hard- 
ware of the implementation from the user's point of 
view. 

For example, the READ or WRITE commands to 
move images between hardware image frame buffers  
and auxiliary storage should behave in a generic man- 

ner. "rhat is, there should be transparent appropriate 
default options which should force only minimal if 
any distinctions to be made by the user between disk 
and tape devices. As another example, parameters 
involving image buffer size or computing window (the 
region of interest within the image buffer) should be 
implicitly defined and should remain 'sticky', i.e., 
defined between operations where required. 

It is obvious that facilities for procedural sequence 
construction and execution are even more essential in 
such a biological millieu. Two major such facilities 
exist at the primitive level: the assignment of picture 
operation statements to interactive command keys, 
and the execution of command sequences using inter- 
active batch processing. For example, a procedure 
developed fi~r dissecting and editing a previously seg- 
mented boundary can be applied, using interactive 
batch, to sequence and perform the bookkeeping on a 
large set of boumlaries. Lists of images or other data 
to be processed can first be generated using one pro- 
cedure and then processed, in turn, using sequences 
of other operations under interactive batch. As a case 
in point, in searching for polypeptide spot differences 
between pairs of 2-dimensional electr,~phoretic gel 
images, the sets of pairs of gels to be compared may 
be gen :rated automatically and the output used to 
create a batch job which will drive the gel comparison 
operation [17.18}. 

The logging of intermediate results is useful in 
reconst rutting successful sequences of operations or 
for recording measurements while interaetively exper- 
imenting witt~ image operations. Saving and later 
using non-image data structures produced by these 
operators (such as boundaries, lists, scalars etc.) also 
simplifies concatenating sequences of image opera- 
tions depeadent on these intermediate results. 

Often we have found large subsystems are needed 
which involve combining several image operations in 
an efficient manner. Such subsets may have been 
developed either interactively or using sequences of 
image operators in batch. Combining operations often 
leads to dramatic increases in the usability of the sys- 
tem. Batct sequences were used in analyzing bone 
marrow smears [11,13] and in editing nucleic acid 
boundaries extracted from electron micrographs [ 14, 
10,25 ]. The combining of a large subset of separate 
operators into a single multi-use operator is called a 
very large operator or VLO. In our system, these 
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include operators to perform noise removal [ 14], 
boundary analysis and segment splitting [15], inter- 
actively drawn boundary extraction, boundary seg- 
mentation [ 11 ], boundary editing and marking, 
region isolation [ 16], and flicker-comparison and 
analysis of 2-dimensional gel images [ ! 7,18]. 

VLOs gain additional advantage by residing in a 
general purpose image processing system which they 
would not have if they were written to stand com- 
pletely alone. These advantages include the ability to 
pre- and/or post-process images. VLOs developed in 
the context of the general purpose system can also 
take advantage of the generally large number of sub- 
routines and code sequences existing for other opera- 
tors, which may be used for the composition of the 
new operators. 

One aspect of any general purpose system which is 
to be used by a number of researchers with different 
investigative interests is to make it as easy as possible 
to select a working subset of picture operators neces- 
sary for their particular problems. Learning enough of 
the system to 'get on the air' should also be simplified 
to encourage its use. Our experience with the BMON2 
system has been that interested biologists could learn 
the minimum subset of picture operators necessary to 
perform useful work in their area in about one day or 
less. It should be noted that biologist-users should not 
be expected to learn the entire system in order to get 
useful work done, just as programmers using PL/! do 
not need to know all aspects of the language in order 
to write programs in PL/I.  A motivated but computer 
science naive biologist may learn a viable subset of 
the system as easily and as rapidly as an experienced 
~rogrammer. 

The physical interface between the biologist's 
image data and an image analycis ~,ystem should be 
relatively fast and simple. Various image forms such 
as 35 mm film, 4 X 5, 8 X l0 or 11 X 14 sheet film as 
well as optical microscope images should be easily 
scanned using the RTPP. A television frame image 
acquisition system is useful in those cases where 
image shading errors can be controlled and many 
frames of data are to be analyzed. Resultant pro- 
cessed images should be available through various 
image recording media (e.g., Polaroid for quick check- 
ing, 35 mm for quality images etc.) as well as being 
maintained in archival form on magnetic tape. 

2. A distributed monitor system 

One of the keys to a successful implementation 
achieving some of the goals just mentioned lies in 
being able to easily make changes to parts of the sys- 
tem without rebuilding the entire system each time a 
change is made. Constructing the system as a dis- 
tributed program rather than a compiled system facil- 
itates achievement of this goal. Such a distributed 
program would have the speed of a compiled system 
through the use of small compiled modules rather 
than through the use of a slower interpreter. 

An important aspect of the DMS is the concept of 
a global state. The global state consists of a set of sub- 
states which may be modified at any particular time 
by one of several separate operators. By state and 
substate we mean that collection of global variables 
associated together. The DMS is implemented as a set 
of chained (overlayed) programs with a disk file copy 
of the state. The operators are implemented as pro- 
grains meeting specified criteria such that they may 
be overlayed (in a manner to be discussed in detail 
later). Furthermore, these programs may be dis- 
tributed arbitrarily over the file system of the given 
machine. One of these programs serves as the master. 
It communicates with the user command stream and 
dispatches control to the distributed operators. Fig- 
ure l shows a block diagram illustrating the DMS con- 
cept. A distributed operator may itself be distributed. 
The primary constraints are that a distributed opera- 
tor be started by and return to the master program, 
and that any state changes be instantiated in the disk 
backup copy of the state. In fig. 2, distributed opera- 
tor Oi actually consists of the sequence of operators 
Oil, Oi2, ..., Oim. The last operator, Oim, performs 
the possible state backup on disk and returns to the 
master program. 

A batch operating system (such as the DEC OS8 
[4]) is an example of a DMS. The programs to be run 
are the set {Oi} while the batch program corresponds 
to the master program. The state consists of a pointer 
to the current position in the batch input stream. 

A major constraint of a DMS is that all ~:,perator 
programs Oi, although they may chain to additional 
programs (e.g., in fig. 2, Oil ~ Oi2 ~ ... ~ Oim), must 
return to the DMS master program when they are fin- 
ished. D.uring the passage of control between opera- 
tors and suboperators, changes in state must be main- 
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Fig. 1. Block d.iagram of a DMS. The master program receives messages from the user input stream. It then either executes the 
command itself or directs a distributed operator to execute it. The state in core is backed up when required on the disk. Addi- 
tional user input may be required by the distributed operators. Control e~,entuaily returns to the master progam where it waits for 
another command to be sent. 

State 

Master Program 

State 
I 

Master Program 

Fig 2. A distributed operator may itself be distributed. The 
primary constraints are that it be started by and return to the 
master program, and any state changes be instantiated in the 
disk backup copy of  the state. 

tained in the bookkeeping of the system. The mas- 
ter's convention is to (1) backup the state to a disk 
file before starting an external operator, and (2) 
restore the state from the disk file upon being 
restarted by an external operator upon its comple- 
tion. It is necessary then, that an external operator 
changing the state mus', save the changed state on the 
disk when it is finished before restarting the master 
program. 

2.1. Monitor state and distributed modules 

The global state of  a system is a set of  instantiated 
parameters accessible by all parts of that system. 
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Many parts of  the system not needing knowledge of 
the entire global state are restricted to access only a 
substate (a substate being a unique subset of these 
parameters). This access can be rigidly enforced or, 
less desirably, controlled by agreement when writing 
operator programs. 

The global state should be capaaie of  initialization 
either in part or in its entirety. This has the distinct 
advantage of  repairing possible damage caused by a 
misguided external operator without destroying the 
entire state by reinitialization. 

Such a global state concept is not new to com- 
puter science and has in fact been used in artificial 
intelligence research for some time [20]. The state 
has been commonly thought of  as a blackboard where 
operators requiring state information may look if 
necessary and those generating information may place 
messages. Those operators not requiring the stale, 
however are not bothered by its existence. 

There is a need to extend and delete the type of 
information contained in a st.ate (i.e., its scope) over 
time as a system matures. Therefore, facilities must 
be included to allow this expan:ion and contraction 
to occur. Dynamic state variation therefore allows 
new operators with new suhstate requirements to be 
easily added. Major new sub~tates can be added by 
,'sing a subset tree of  pointers and attributes in the 
global state. Such a tree can be started in the global 
state (so that it can always be found) and then traced 
as far as possible in the state found in core. Further 
pointers can then direct to the rest of  the tree or the 
substates themselves as disk files. Removing a sub- 
state merely means finding its attribute and deleting 
the entry from the tree. 

It is of  interest that from both the view of the 
application programmer and even more significantly, 
the biological user, this places minimal requirements 
on what must be learned in order to add or use a new 
function. ]'his tends obviously to make for greater 
biologist acceptability. 

2.2. Operating system requirements imposed by a 
DMS 

The CPU and core memory requirements for a 
DMS are modest while the disk space required 
depends on the number of external operators. As will 
be demonstrated in section 3, a very large DMS can 

be built on a machine as simple as a 12-bit word size 
PDP8 with 32 k 12-bit words of core memory and 
1 - 6  M words of  disk storage running under DEC's 
OS8 operating system [4]. :~everal features of  a host 
monitor system are required for the successful imple- 
mentation of a DMS. The most important is a disk 
file system that can access files whose names and 
devices are specified during run time. Another 
~equirement is to be able to specify a program to be 
loaded and started (i.e., run) from the currently 
running program. This is sometimes called chaining or 
dynamic overlaying. In order to run a sequence of 
programs under batch, there must be a mechanism for 
intercepting batch stream data from a program. (In 
OS8, this mechanism is called the command decoder.) 
Thus the actual restrictions are minimal and should 
present no major difficulty in implementing a DMS 
on most computer systems. 

2.3. Operators - built in and external 

Operators in a DMS consist of two types: built in 
and external operators. Built in operators are physi- 
cally part of the master program and externals are all 
others. Since built in operators will execute faster not 
having to be loaded and run as separate programs, 
care should be taken in selecting those operators to 
be made 'built ins'. Several informal 'rules' have 
evolved in our work which we use to decide whether 
a needed function is to be built in. 

1. The operator should be small. Large operators will 
waste master program space. 

. The operator should be invoked fairly often. The 
additional overhead of making a rarely used opera- 
tor external should not greatly contribute to aver- 
age system overhead. 

. The execution time of  the operator should be 
short. If the execution time is long, the additional 
time to evaluate it if it is an external operator 
would not contribute greatly to the system over- 
head. 

4. There already exists a built in operator similar to 
the new operator for which most of  the code can 
be shared resulting in minimal code overhead. 



26 P. i.emkhl. L. Lipkht. B3IO.V2 - Distributed monitor O'stem 

in a continually evolving system such as BMON2, a 
working set of built in operators is eventually pro- 
duced by tuning the system through using it. O,r  
working set evolved over several months with some 
additions and a few deletions to the working set of 
built in operators. After 4 years ,,f using BMON2, we 
are still adding very large operators as well as new 
operators, but the list of 'built ins' has stabilized long 

s~nce. 

2. 3.1. SecmMary pars#L¢ o f  c~mmtands ht distributed 

( , l ) ( ' r a h  ~r,,~ 

Commands are generally received by the master 
pr,,gram which p.'lrses il. Further parsing of a com- 
mand may be required by parlicular ,,perators, in 
~ hicla case secondary parsing is perfi,rmed. This 
semantic checkinb, phase verifies parameters expected 
against those actually specified fi, r the distributed 
t,per:itor in the distribulcd operat,)r itself. Further- 
mote. tlle t)perator may request additional user input 
which in turn must be parsed. By distributing the 
parsing (,f user input the complexity of the master 
program parser can be reduced but at the expense of 
some duplication of parser code in the distributed 
operator modules. 

3. Current implementation - BMON2 

3.1. BM(),%~ bu./.!'er memora' hardware and software 
]acilitics 

The BMON2 system will now be described in 
, erms of the DMS concepts developed above. The 
particular hardware used by this system is discussed 
as well as the structure of the BMON2 monitor itself. 
The ctm]putcr used is a DEC PDP8e with --6 M 
12.t~it w¢)rds t,f disk memory and 32 k 12-bit word 
core memt,ry, it t,perates under DEC's OS8 single 
user (ntm-interrupt driven) operatitlg system [4]. 
Image frame buffer memory Is part of the real time 
picttlre processor (RTPP) 14--6!. The RTPP consists 
prin~arily of a PDPSe computer, a 11 frame/s TV dis- 
play can]era subsystem built around an IMANCO 
Quantimet 720 system, image frame buffer men]aries, 
and an ir.teractive control desk. Another version of 
the RTPP has been constructed around a 27 frame/s 
CRT display with a 512 X 512 viewable area and 

without TV camera input. Figure 3 is a block diagram 
of the RTPP. Figure 4 shows the physical placement 
of the TV display and interactive control desk. Fig- 
ure 5 illustrates the keys and switches of the control 
desk. 

3.1.1. Stnwture o f  buffer memory frame buffer hard- 
w a r e  

The RTPP buffer memory hardware consists of 
eight 256 X 256 arrays of 16-bit pixels'(which may be 
used as two 8-bit pixels, designated as low and high 
byte. as well). The memories are addressed as BMO 
through aM7. The 8-bit high image in a BM is 
addressed as BMitt and the low image as BMiL or 
BMi. P::: ~caily, each BM consists of 4 wirewrapped 
boards each, holding sixty-four 4 k-bits dynamic 
RAMs. 

The BM controller interface allows multiple device 
requests to be made ot the memories in the following 
manner: Vidicon or Piumbicon TV camera video to 
BM: BM t,, TV display: PDP8e memory to/from BM. 
Analog video from the TV camera is digitized at 

Light  i - -  ~ - ~ - - ~  ~ . . . . . .  / ~, 
' V d con  ' ! Ouant~me! / Gray Level  

laox .,.,f + i : ' " I l l  TV ~ 720 ~ CRT D~spla¥ j 
fo,  , . +  

. i Camera  . J i TV Svssem 860X720 ,r 

1 
Compute ,  ': . . . . . . . .  / I 
Contr II i _ Ph,mh+corl l I D a t 3 R ' C o n t r o l  
A, ,o~ ,  ~ - ~ .  rv  , J I 

• i Camera  I 
M ic roscope  / 

i Bu e M e  o v w . .  256X256 
Contro l ler  

! Buf fer  M e m o n e s  

i / i Data f:l" Con t ro l  

1  oo,,o,  oo,,o, 

6 M  Disk T ~ Desk 

y 

User "~ 
Telelype; 

Fig. 3. Block diagram of tile RTPP. The PDP8e computer 
directs the microscope state to positions determined either 
manually by the operator. Images may be acquired by the 
buffer memories for processing by the BMON2 system. Raw 
images as well as processed images may be displayed on the 
Ouantimet 720 CRT display. TV camera input is from one of 
the two alternate TV cameras which are easily interchanged 
in -:2 min. The user interacts with all of the above hardware 
via the PDPSe using the BMON2 image processing software 
system. RTPP = real time picture processor. 
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Fig. 4. Phat~graph of the TV display and interactive control desk. 

8 Mhz rate to 8-bits. This digitized video is assembled 
into 4 pixel chunks which may then be written into 
tile BMs. If BM data is to be displayed and/or normal 
camera video is to be displayed, then tile 8-bit data 
maltiplexed from the two sources are then converted 
back to analog and sent to the TV display controller. 
Because the BM cycles every 500 ns and the TV 
camera/display pixel rate is 125 ns, BM data is trans- 
feted in 4 pixel ch:mks and buffered accordingly. 
Thus random accessing of pixels takes a minimum of 
500 ns instead of the 125 ns possible when trans- 
ferring data in raster mode. 

The pixel addressing system is the RTPP logical 
coordinate system (LCS). The LCS has (0, O) as the 
upper left-hand corner (x, y)coordinates and (1023, 
1023) as the low~:~ right-hand corner. The visible 
screen size is effectively [0:860, 0:680]. Each BM is 
positioned independently in the LCS. Normally, the 

images are positioned adjacent to each other. Individ- 
ual BMs or sets of BMs may be posted on the TV 
monitor independently, with either high or low bytes 
being shown. Addressing conflicts in BMs which over- 
lap in LCS space are resolved with a hardwired prior- 
ity network such that BMO is displayed before BMI, 
BMI before BM2 etc. The normally undisplayed byte 
of the BM having the gray scale image being displayed 
may be displayed as a binary overlay. This is useful 
for implementing line drawings. Furthermore, the 
PDP8e can synchronize with the start of each new 
display frame in order to decide on the correct time 
to change the BMs being displayed (the display state). 

Pixe! data may be translerred at 2.4 ~s/pixel using 
direct memory access with the PDP8e. Data are trans- 
ferred in either of 4 packed modes: low byte/pixel, 
high byte/pixel, 16-b't pixel, and 16-bit unpacked 
with sign extension for performing arithmetic. A 21- 
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Fig. 5. l l lusration of the RTPP interactive control desk keys and switches. The RTPP interactive control desk is situated next to 
the RTPP with the Ouantimct-720 video display to the rear of the control desk and the Axiomat microscope off to the side. A 
Graphpen spark tablet is located immediately in front of the operator with the pushbuttons and lights mounted in two large 
boxes to tile left and right. The remote Quantimet variable frame and scale keys are located in a small box with a movable cable as 
is a joystick for the le iss  Axiomat (x, y)  stepping stage. The latter has a long cable and may be used at the microscope for control 
of the stage while viewing through the eyepiece of the microscope. The control desk controls are fisted as follows going from left 
to right and top to bottom (for the left box first): the QSTAT lights indicate the status of  the Quantimet interface; the pots are 
connected to A/D channels in the PDP8e; FBW2 are lit "command" keys for the PDP8e; the remote frame switch enables the 
remot,: frame and scale switches even when the PDP8e has not enabled them; the frame size switch freezes the frame and scale 
sizes so that a frame of fixed size may be moved around; the standby switch places the Quantimet display and system control in 
standby mode; the motors enable switch (also in joystick box) enables the stepping motors when the light above it is on. For tl~e 
right control box, the controls arc: keypad display of keypad input foi the PDP8e; FBW3 'classification' keys for the PDP8e; 
DISPI/2 PDP8e display lights which are decoded as BCD in the top lights and as octal in the bottom lights: FBW4 PDPSe .toggle 
switches; keypad to input 6 BCD digits to the PDP8e; FBWS/6/7 PDPSe octal digiswitches; Execute key used to execute (inter- 
pretively by the PDP8e) instructions given in the digiswitches; eight 5-position spring loaded toggle switches to control various 
stepping motors with fast and slow speeds in both forward and reverse directions. 

bit address is needed to specify the transfer. The state 
variables specifying these parameters are also speci- 
fied. 

Byte BM Y X 
select number address address 

Fortran 
COMMON state 
variable 

2-bits 3-bits 8-bits 8-bits 

/BYTE MEM I Y  I X  

3.1.2. Structure of  bufjer memoo, software address- 

Although it is possible to code a picture operator 

to perform BM !/0 directly, this is discouraged. 
Instead, two subroutine packages were developed to 
do this: BMIO and BMOMNI [8]. BMIO maximizes 
data rates but requires detailed knowledge of  the sys- 
tem state variables in COMMON, while BMOMNI is 
for the naive programmer, and requires little detailed 
system knowledge. BMIO consists of a set of  Fortran 
procedures with parameters and data being passed 
through COMMON state variables. BMOMNI is called 
with an operation request number and all parameters 
and data are passed as subroutine argun,ents. 
BMOMNI actually contains redundant copies of  
BMIO subroutines as well as controlling > 30  other 
RTPP I/0 devices such as switches, display cursor, 
computing window display etc. The various I/0 
modes and subroutine entry names are listed in 
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Table 1 
Picture memory l/:~ccessing procedures 

a. Point or pixel byte mode:~CK2D/FETCH2D. 
COMMON args: [MEM, IBYTE,~..IY, IX, IZ]. 
COMMON data: [IZ] 

b. Line byte mode: T3BUF (buffer, opr). 
opt :-- 0/1 to read/write 3 lines packed 
opr = 2/3 io rcad/wiite I line unpacked. 
COMMON args: [MEM, IBYTE, IY] 
data: [buffer, opt] 

c. 3 x 3 neighborhood byte mode using triple line buffering: 
GET! 1. 

COMMON args: [MEM, IBYTE, IY, IXI. 
COMMON data: [i10, i11, .... 1181 as: 

!13 !12 i l l  ( x - l , y - l ) ( x , y - l )  ( x + l , y - 1 )  
i14 118 110 ( x -  l , y )  (x,)') (x+  l ,Y) 
!15 !16 117 ( x - 1 , 3 , + 1 )  ( x , y + l )  ( x + l , y + l )  

centered at i 18 (x, y" 

d. 3 x 3 neigborhood byte mode using fresh copy buffering: 
GETNGH. 

COMMON args: [MEM, IBYTE, IY, IX]. 
COMMON data: [!10, !11 ..... 118] as: 

!13 112 i l l  ( x - l , y - l ) ( x , y - 1 )  ( x + l , y - 1 )  
!14 !18 !10 ( x - l , y )  (x ,y)  (x+  1,.1') 
!15 !16 !17 (x -1 , . 1 '+1 )  ( x , y + l )  ( x + l , y + l )  

centered at !18 (x,y) 

e. 512 pixei/line byte mode is simulated using 4 BMs and 
the T3BUF procedure in single line mode. The BMs are 
aligned as: 

BM0 BMI or BM4 BM5 or BMOH BM1H or BM41i BMSH 
BM2 BM3 BM6 BM7 BM2H BM3H BM6!I BM711 

lems. Perhaps both of these coupled with a flexible, 
biologically concerned programming staff is the rea- 
son. 

3,1.3. Levels o f  accessing an image 
An image may be processed at several levels of 

resolution. These include, from highest to lowest 
levels: 
(a) The entire display,; 
(b) Within the entire display defining at least one BM; 

(c) Within a BM defining a computing window; 
(d) Within the computing window defining a cursor 

to point to a specific pixel. 
Useful operator interaction requires that programs 
and users be able to articulate each of these image 
levels. 

3.2. Software architecture 

3.2.1. Ma/or operator groups 
The set of BMON2 operators may be more easily 

understood if they are grouped according to function. 

The major groups are listed in table 2 with the 

detailed operator lists given in appendix A. By group- 
ing common operators together, the programmer can 
often take advantage of  procedures common to sev- 

eral operators within a group. 

The following algorithm is used to perform the 512 to 
256 mapping based on input line IY1: 

Procedure I0512(IY1); 
Begin '512 pixel line 1/(9" 
DIMENSION IBUF[0 : 511]; 
IF IYI > 255 THEN MEM: = 2 ELSE MEM: = 0; 
IY: = IYI A'377; 
T3BUF(IBUF[0], opr); 
MEM: -- MEM + 1; 
T3BUF(IBUF [ 256 ], opr); 
End '512 pixel line I/0"; 

table 1 with the names of parameters passed through 
Fortran COMMON. 

There is n~ reason why BMOMN! could not be 
profitably employed by a user. This has not occurred, 
which may reflect either the sufficiency of the reper- 
toire or the unconcern of biologists with system prob- 

Table 2 
Operator groups 

1. Image display and acquisition operators 
2. Image input/output operators 
3. Control desk 
4. State initialization and state inquiry 
5. Auxilliary programming 
6. Synthetic image operators 
7. Unary image point operators 
8. Neighborhood unary image operators 
9. Point binary image operators 

10. Statistical display operators 
11. Line drawing operators 
12. Segmentation operators 
13. Scalar measurement operators 
14. Quantimet function operators 
15. Texture measurement operators 
16. 3 Dimensional reconstruction operators 
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3.2.2. Skeletons - structures fi~r constracting new 
operators 

A skeleton is the structure within which a new 
external operator may be constructed. It consists of 
all pre- and post-operator procedures e.ece~sary to 
smoothly interface a new operator with the BMON2 
system. The structure of a skeleton is given here in 
outline tbnn as algorithm A. 

Algorithm A. Operator skeleton procedure 

i. Print the name of  the operator. 
2. Do any additional syntax or semantic checking 

of the command line parse required for the par- 
ticular operator. For example, BMs which must 
be present need to be checked for. If the specifi- 
cation is incorrect, then print a message and take 
the error return back to BMON2 (see section 
3.3.5). 

2.1. Restore the state in COMMON. (Not normaJly 
required.) 

3. Evaluate the kernel of the operator. 
4. Save COMMON in the state disk files only if 

there was any change to the state. 
5. Chain back to BMON2 via the OS8 monitor. 

BMON2 itself was constructed so that the kernel 
procedures required for the up to 64 built-in opera- 
tors were included in the main program. These proce- 
dures were implemented by a set of  9 subinterpreter 
subroutines, auxiliary subroutine packages BMAXI 
through BMAX9. Each in turn can then be used to 
evaluate the selected function as required by passing 
the function number desired through a COMMON 
variable OVAL). For example, tile BMAX3 package 
contains the following functions listed in table 3. 
These auxiliary functions may also be used in compo- 
sition with other software presently in the existing 
external operators to create new operators. 

3.2.3. Solh'are state o f  BMON2 

We have previously compared the software state of 
a DMS to a blackboard where messages may be left 
/'or various procedures which may require them. The 
BMON2 software state includes some of the following 
substate variables listed in table 4 which are instanti- 
ated in Fortran COMMON. The BMON2 state is saved 
on two disk files SVDDTG.DA and SVBMON.DA 
consisting of a partition of COMMON. When BMON2 

Table 3 
Example of auxiliary functions in procedure BMAX3.FT 

IVAL Function 

6 
7 
8 
9 

10 

BMj = HISTOGRAM(BMi) 
Setup the computing window (KXI : KK2, 

KYI : KY2) 
BMj = EDGE(BMi, threshold 1, threshold 2) 
BMj- AVG8(BMi) 
Q-register = EVAL(arg l:arg 2; switches for 

add, subtract, etc.) 
BMj = GRAYBAR 
BMj = LAPLACE(BMi) 
BMj - GRAD4(BMi) 
BMj - SHOWHISTOGRAM 
BMj = FILLPINHOLES(BMi) 

is started, the state is restored from these files and 
when BMON2 chains to an external operator, the 
state is saved in these state files. External operators 
which change the state are require, to save the new 
state in the state files before returning (via chaining) 
to BMON2. A parameterized subroutine BSCOMMON 
is called to swap COMMON to the disk for ~,-mg and 
restoring the state. 

3.2.4. BMON2 syntax 

Commands are normally entered one per !ine and 
are prompted for by BMON2 printing a '*'. Seine 
typical examples of command lines are given here to 
show the flavor of the language before its syntax is 
discussed in detail. 

, INIT 
*POST, BMO 
,BM 1 - COPY, BMO 
*BM2 - SLICE, BMO, 150, 255 
*BM2 - SLICE, BMO, PO 
*BM3H - GRAYBAR/I 
*BM2 - COLOR, 128 
*BM5 - READ, MTAO: LLOO27.PX/R 
*SETGENSYM, LL, 0028 
*MTAI :GENSYM.PX - WRITE, BM7 
*BM3 - BMI, ADD, BM2 
*BM4 - BMI, DIFF/U, BM2 
,BM5 - GRAD4, BM2 

The general form of  a command always includes 
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Table 4 
Some  of ten  used s tate  variables 

1. Parse state variables: 
MCD[ ! : 36] - unparsed c o m m a n d  decode r  input  buffer  
KOUTFILE[  1 : 41 - o u t p u t  symbol  n a m e  f rom parser 
KINI : ILE[I  : 5,  1 : 4]  - 5 input  s y m b o l  names  f rom 

parser 
ICNUM [ 1 : 5 ] - 5 i n p m  symbols  parsed as number s  

f rom parser 
ISW[ 1 : 361 - inpu t  binary switches,  eg.,]S f rom parser 
KDEVOUT[  1 ] - o u t p u t  device name  f rom parser 
KDEVIN[  1 : 5] - input  device names  f rom parser 
IBMI,  l t lGH1 - I st input  BM n a m b e r  and  byte  f rom 

parser 
IBM2, IHGH2 - 2nd BM number  and by te  f rom parser 
JBM, JHGH - o u t p u t  BM number  and  by te  fr~om parser 
IMA, IMB - 1st BM post bit pa t te rn  f rom parser 

2. Buffer m e m o r y  posi t ion variables: 
LSAVE[x  : ), ,  BMO : BM7] - posi t ions  on  in the 

display 
IPSTA, IPSTB - BM A and B group post  status words  
IXPOSITION, IYPOSITION - current  cursor  
KXl  : KX2,  KY1 : KY2 - compu t ing  w i n d o w  in LCS 

3 Buffer m e m o r y  addressing variables: 
IX, IY, IZ, MFM, IBYTE - BM I / 0  address parameters  
KX, KY, I X l .  IX2,  IY1,  IY2 - free addressing variables 
LASTY - last y address  used in triple l ine buffer ing 
LASTBM - last MEM address in tr iple line buffer ing 
IBUF[ 1 : 4,  0 : 2551 - assignable l ine in buffers  
I10[1 : 91 eqv. I 1 0 . 1 1 1 , 1 1 2 ,  113, I 14 ,115 ,  !16 ,117 ,  

!18 - 3 X 3 n e i g h b o r h o o d  

4. Ex tended  state o f  o the r  variables for s tepping m o t o r  

states: 
M D P D A T A [ !  : 8, 1 : 12J - 12 s tepping m o t o r  

double  precis ion substates i 

[ 1 : 2, i i l o w e r  m o v e m e n t  l imit  
[3 : 4 ,  i l u p p e r  m o v e m e n t  l imit  
[5 : 6,  i ldes i red  posi t ion l imit  
[7 : 8, i l cu r r en t  posi t ion l imit  

MSLOW ! 1 : 121 - s low stepping m o t o r  rates 

MFASTI 1 : 1 2 J  - fast s tepping m o t o r  rates  
MACTIVEIbi t s  0 : I I ] - 12 s tepping m o t o r  active bits 

5. Twenty-six Q-registers and o ther  a r i thmet ic  variables: 

ITMPSTK{1 : 261 - integer  Q-registers low order  
I Q R E G [ I  : 26] - integer Q-registers high order  
GENSYM[ 1 : 21 - file name  genera t ion  variables 

IA[ I  : 21, IC[1 : 21 - free variables 
FA, FB, FC - free variables 
IDMAX, IDMIN - free variables 
IVAL[1 : 21 - free variables 

an operator. It may include one or more operands 

which may be buffer memory names and other 

operands depending on the particular operator. 
The BMON2 command line syntax given in table 5 

in the form of a backus normal form (BNF) grammar. 
Note that the ' - '  is the underline character and is 
equivalent to a back arrow on some teletypes. It is 
used to indicate assignment. The '<' character is 
equivalent to the ' - '  in the OS8 environment. Fur- 
thermore, if no output specification is required 
'-right side of specification' is equivalent to 'right 
side of specification'. 

Buffer memories are specified as 'BMnh' where n is 

Table 5 
BMON2 BNF grammar  

<cmd line):" = <cmd) (switches> 
<cmd): :  = <op>, (args~ 

:: = <filespec) _ ~op), <args) 
:: = <filespec) _ <op>, (BM> 
:: = <BM) _ <op>, <f'despec> 
• - = <op>, <BM), <args) 
:: = <BM) __ Cop>, <args' 
• " = <op>, <BM), <BM>, <args> 
--= <BM ~, <op), <BM>, <args~ 
"" = iBM> _ <op>, <BMs, <BM~,<args~ 
:: = <BM) _ <BM), <op'~, <BM>. ~args) 

<Iilespec >:" = <device > • ~file name  >. <extension name  
<device ):: = SYSIDSKBIDSKCtDSKD IDSKE IDSKI: IDSK(; I 

DSKH IDTAOIDTA 1 ILPT 
<file name>:: = GFNSYM 1(6 character  a lpha-numeric  identi-  

fier beginning wi th  le t te r )  
<extension name>::  - (2 character  a lpha-numeric  i d e n t i f e r )  

<args>:" = ~args>, <arg>l<arg> 
<arg):" = decimal  n u m b e r  up to  4095 

:" -" <knob > 
• " = <control desk switch > 

• " = <keypad) 
• - = <Q-register) 
:: - null 

' knob~: :  " P<octal digit> (Knobs  0 • 7 with values [0 • 511 J) 
~controi desk switch ):: " FBW<decimal digit ) ~'control desk 

switches 0 • 9 with values J0  " 4 0 9 5 ] )  

~keypad>: "= KDP (keypad  values [0 " 999 ] )  

<Q-register):: = QR<let ter)  
<letter>:" = AIBICI ... IYIZ 
<op >:: = legal c o m m a n d  
< BM ):: = BM<octal digit ><byte > 
<octal digit ):: = 0 I1121314151617 
<decimal digit >:: = <octal digit > 1819 

<byte>:" = HILInuli 
<switches>:: = ]<letter >l](octal digit)l  

:: - / S  = <2 digit octal  n Jmber)  
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the buffer memory number and h denotes an optional 
byte selector (h = null or "L" for low byte, h = 'H" for 
high byte). The notation (BMi') (h' is the comple- 
ment of h) denotes the other half of (BMi). So called 
software (switches) are denoted by '/" followed by an 
alpha-numeric character. Other parameters, denoted 
(args), may also be specified. Note that (args) includes 
decimal numbers up to 4095, Q-registers (see below), 
physical devices such as: the 8 knob pots (Pi), the 
control desk switches FBW1:9, and the keypad KPD 
(numbers 0:999). Twenty-six specially named regis- 
ters called Q-registers are available for the operators 
(or the user) to pass integer parameters between oper- 
ations. The syntax fi)r the registers is 'QR(letter)'. 
The special symbol GENSYM may be used instead of 
a file name to indicate that BMON2 should generate a 
file name when referenced by incrementing a 4 digit 
post fix number appended to a two character prefix of 
the OS8 file name. A parser restriction prevents the 
specification of both decimal integers and other 
types of (args) in the same command line. This is 

actually not that difficult a restriction since integers 
may be stored in Q-registers. 

L-I Slale to 
~.ore 

Stale Files ) 

Ma~n Lcop 

_!  

r f ' Yr°l _ r  

[ J 
I '  

I I P~ '~ '  I 

i 1--c F '  Mole ~,Ji~, Cole 
Siaqe ~ Comro! ~)-~--I State ,n O,a 

I Stepioinq Motois I ~Sw,iches / i f,le~ State Ides 
L " . . . . J  ~ / 1 

and dl5Oic!7 t ,. l 
,n LEDS 

Fig. 6. Top level BMON2 control flow. 

3.3. Control s tr ,  cture 

3.3.1. Top level BMON2 f low - command # l t e r -  

preter 

The top level BMON2 control flow is shown in 
fig. 6. Upon starting, the program restores the 
COMMON state from the disk state files. It then 
enters a command input loop where operator inter- 
vention is tested. Commands entered as teletype 
strings are parsed (c.f., sections 3.2.2:3) and then 
interpreted (c.f., section 3.3.4). 

3. 3.2. Command ;,after 

The PP, MON2 command parser is shown in fig. 7. 
-rhe parser is embedded in the OS8 system by usin[, 
its command decoder option. The command decoder 
specifies a command as an output name followed by 
a - followed by up to 5 i~iput names. Software 
switches (as defined in section 3.2.4) may be used ~o 
modifl, and/or parameterize the command line. 

3.3.3. Results o f  parsing a c o m m a , d  l i ,  e 

A command line can contain the following infor- 
mation which is analyzed by the command decode- 

L,.,o- / 
Parameters IBM1. IHGH1 

JHGH JBM IBNI2 ,HGH2 
P41- 0 IMA IMB 
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Fig. 7. BMON2 command parser flow 
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parser subroutine BCDSPEC.FT ('B'MON2 'C'om- 
mand 'D'ecoder 'SPEC'ification). 

1. One output argument (denoted by a ' - "  to its 
right). 

2. Up to 5 input arguments separated by commas. 

3. Up to 36 switches (denoted as/A,/B, . . . , /Z,/0, 
/ i ,  ...,/9). 

4. Control desk command key assignment value speci- 
fied as '=nn/S" where nn is the command key name 
0-14  octal. 

This information is parsed and appears as the follow- 
ing Fortran COMMON variables: 

1. KDEVOUT OS8 device, KOUTFILE[ 1:4] as 4A2 
format. 

2. KDEVIN[ 1 "5] OS8 devices, KINFILE[ 1:5, 1:4] as 
5(4A2) format, or ICNUM[ 1:5] input arguments 
which have values [0:4095]. 

3. ISW[1"36] asOor !. 

4. MCD[39] as nn value. 

traded off against possible ambiguity which however 
is never allowed to produce a fatal error. 

Further parsing is performed. The KOUTFILE 
symbol is checked to see whether it contains a sym- 
bol 'BM(digit)'. State variable JBM contains the digit 
(0 if none) and JHGH contains 1 if the symbol ended 
in an 'H' as in 'BM3H' indicating high byte. Similarly, 
the 5 KINFILE symbols are checked front left to 
right for 'BM(digit)' symbols. If one is found, it is put 
into (IBM1, IHGHI ) as for (JBM, JHGH). The sym- 
bol is then removed from the KINFILE list and the 
list compressed. This process is repeated up to one 
more time in order to find the possible second input 
operand in (IBM2, IHGH2). The KINFILE list is then 
searched left to right for symbols which represent 
scalar values such as pots PO, PI, ..., P7; switches 
FBW1, FBW2, ..., FBW7; the keypad KPD and 
Q-registers QRA, QRB, ..., QRZ. if a symbol is found, 
it is removed as before from the KINFILE list and the 
corresponding device or register evaluated and the 
value stacked in the ICNUM list. Finally, the symbol 
left in the KINFILE[ !, 1:4] array (leftmost symbol) 
will by definition be the operator. The parser thus 
reduces the command line to an operator prefix form 
(as in the LISP language) for easy evaluation. For 
example, in the following command where pots 0 and 
1 have the values 123 and 234 respectively, the global 
parse variables arrays are defined as: 

5. MCD[ 1:36] - initial command string in 36A2 for- 
mat. 

A few examples will be given here to illustrate the 
characteristics of the command decoder parser. 

Z -  A, 3, B,4 

or 

Z - 3,4, A, B 

are parsed into the global parse variable arrays: 

Index KOUTFILE KINFILE ICNUM 

1 Z A 3 
2 B 4 

Thus it is clear that the position of numeric argu- 
ments is not critical and that they may be mixed with 
non-numeric arguments. Syntax insensitivity is thus 

BM2H-SLICE, BM 1, PO, P1 

Index KOUTFILE KINFILE ICNUM 

1 (null) SLICE 123 
(null) 234 

JBM/JHGH IBMI/IHGHI 

2/1 1/0 

Other state variable changes are noted such as check- 
ing whether the variable frame TV overlay is within 
the first input BM if the/U switch is specified. The 
variables (KXI :KX2, KYI :KY2) are set to the rela- 
tive computing window values. Otherwise, they are 
defaulted to (0:255,0:255). 

3.3.4. I n t e r p r e t e r -  bui l t  in /external  evaluation 

Figure 8 shows the control flow of the BMON2 
interpreter. External operators such as SEGBND, 
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EXTRACT, ZOOM etc. are implemented aschaiueci 
OS8 '.SV" core image files. When one of these is 
called, the state ol BMON2 (including the parsed 
command line) is saved in system (SYS:) disk files 
(SVDDTG.DA. SVBMON.DA) before the chain is 
executed. The operator segment, on being started, has 
the option of restoring the state of BMON2 from 
these files or assuming that the state is left in COM- 
MON. I| then uses the Farsed argument specifications 
in COMMON. After it performs the operation, it has 
the opti .n of saving the new state of BMON2. It then 
,-basins back to BMON2. The chain operation is per- 
formed by BMON2 as follows in algorithm B. 

Algorithm B. Operator evaluation 

1. The operator is checked against a list of inter- 
nal BMON2 operators. If it is an internal opera- 

tot, it is executed within BMON2. 
2. An unknown operator (potential CHAIN oper- 

ator) X is looked up on the SYS: as 
'SYS:X.SV'. 

2.1. If it is found, then the state of BMON2 is 
saved, and the system chains to SYS:X.SV. 

2.2. If X is not round, then BMON2 searches the 
rest of the disks in the following order: DSKB, 
DSKC, DSKD, DSKE, DSKF, DSKG, and 
DSKH. ~.ny disks off line are .n/~: searched. 

" 1 Ifi., is found on any t,~""~,,,.. .... -~ disks then X.SV 
is copied to SYS:JUNK.SV file and the system 
chains to SYS:J~NK.SV. ~ 

"~ "~ If X is not fi~und, an error message '?X.SV' is 
priqted and control rciurnz !,~ wait for the next 
command at the BMON2 level. 

This mechanism thus permits an operator to be 
added o~ del~:ied flora the BMON2 system by simply 
auumg to (removing) from the PDP8e computer sys- 
tem disk packs with the operator program segments 
on them. ( lhe  system Das a total of 4 dual surface 
disk drives.) 

3. 3.5. Distributed svntav checking 
A major advantage of the DMS concept is that the 

peculiar syntax and semantic needs of a particular 
operator can be built into the operator ~tself. in par- 
ticular, requirements as to BM specificaiions, disk 
usage, etc. may be checked at the operator level. 
Three internal subroutines are commonly used by 
many of the external operators: i.e., CKOUT. CKIN, 
and CKIN2. The first checks fi)r an output BM speci- 
fication by parsing the output symbol for 'BM' fol- 
lowed by a digit. CKIN does the same for the first 
input BM symbol. CKIN2 does a CKIN and 
checks for the existence of the next BM input sym- 
bol. For example, applying CKIN2 and CKOUT to 
the parse string 

'BM2 _ BMO, ADD, BM 1' 

would be successful. Additional semantic checks may 
be made. as for example checking whether the input 
BM name is different from the output BM name, etc. 

3.4. AdCbtg new external operaters to BMON2 

Once again, our implementation of the DMS con- 
cept makes the addition of new external operators to 
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the BMON2 system, easy and with few if any unfor- 
seen complications. This feature permits programs 
(such as BMON2 or the external operators them- 
selves) to run other programs by requesting through 
the OS8 monitor. The external operators are pro- 
grams, OS8 core image (OS8 .SV extension) f'des, 
created by compiling, loading and saving the pro- 
grams. As noted in section 3.2.3 the critical compo- 
nent of interfacing these new operator programs to 
BMON2 is in saving and restoring the state informa- 
tion and the operator programs themselves. 

Most new operators are created by taking the skel- 
eton from an existing procedure of a similar type and 
changing the kernel of the procedure to perform the 
new operation (c.f., section 3.2.2). Each external 
operator has a prologue to restore the state and an 
epilogue to save it and chain back to BMON2. The 
external operator uses the COMMON declaration file, 
BMCMN.FT, during compilation so that any opera- 
tions requiring COMMON will have it available. 
Actual BM I/0 may be performed either using 
BMIO.FT or BMOMNI.FT (c.f., section 3.1.2). 

3.5. The class of  macro expansion batch operators 

There has evolved a special calss of BMON2 opera- 
tors quite different from the usual picture ooerator, 
the macro expansion batch operator. It is character- 
ized by its use; namely to expand a set of parameters 
into a batch job for running BMON2. Currently 
3 operators are in this group: APPLY, MAKLST and 
MAKCMP. 

APPLY takes a template batch job and a set of 
parameters and does a simple parameter replacement 
and batch job submission. MAKLST is used to restore 
to the 3 scratch disks a list of 2-dimensional electro- 
phoresis gel images from a set of magnetic tapes. It 
uses information stored in a data management file, 
GEL.DA, regarding picture names and magtape vol- 
umes where gel images are stored indexed by gel 
accession number. MAKCMP is also used in the 
2.dimensional gel analysis to generate batch jobs for 
defining landmark spot sets (a landmark spot in a 
2-dimensional gel is a well defined polypeptide spot 
identifiable in several gels). It is also used to pair 
spots between gels for a number of gels taken two at 
a time in a batch mode. 

4. Annotated example of  a BMON2 run 

Appendix B shows the BMON2 operation 
sequence used in a batch job to acquire and pre- 
process an electron micrograph of nucleic acid mole- 
cules. The object of this sequence is to: acquire a 
field from the TV/micrograph input system; pre- 
process it preparatory to segmentation; segment it 
into a file consisting of a set of boundaries; post pro- 
cess this file into a set of edited boundary data files 
which are then saved on magnetic tape. 

Steps ! - 3  define the sample window to be 
scanned. Step 4 acquires the image at 2× magnifica- 
tion and then smoothes it by averaging and reducing 
it to 1X size. Step 5 complements the image so that 
the strands are black (since we are working with nega- 
tive film input. Step 6 low pass filters the image to 
remove the effect of shading error in the image. Steps 
7 -9  find the threshold and slice the image such that 
the image consists primarily of strands and noisy 
blobs. Major gap repair is done where possible in step 
10 using an interactive Graphpen to edit the image. 
Small non-linear blobs are removed in step 11. The 
image is segmented in step 12 and separate boundary 
data files created with marked endpoints in step 13. 
Finally the boundary data files are saved on magnetic 
tape in step 14. 

5. Discussion 

5.1. How DMS implementation helps image pro- 
cessing user 

In solving a problem, one often breaks larger u, .  
sol red problems into smaller solvable problems. A 
DMS permits an investigator to create and test, inde- 
pendent of the requirements and state expectations 
of the rest of the system operators, new operators in 
an attempt to solve these subproblems. Because of 
this independence, creating new operators is relatively 
easy. By accumulating experience with sequences of 
such operators, more compact and efficient 'repack- 
aged' operators embodying the same sequence of 
operators can then be created, which may and fre- 
quently do evolve into what we have termed very 
large operators, 
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5.1. I. Minhnum "wimlow'of  system knowledge 
required lbr e~tension 

The software interface between the DMS and a 
particular operator is known as the window (some- 
what similar to the concept of gateway used when 
discussing spheres of  protection in time sharing sys- 
tems). It may be thought of as two funnels connected 
through the narrow ends to each other. The window 
actually consists of  a subset of the state variables. A 
minimum window size is desirable in order to maxi- 
mize the ease of understanding this interface. By par- 
titioning the state ir~to substates, only those substates 
actually used need be understood. This requires an 
understanding of t !~ e classes of substates which exist 
and oniy then detailed knowledge of those of inter- 
est. At the user level again, this strategem minimizes 
the demand on the user to learn new system features 
in order to use the new operator. 

5. I. 2. Concept ol'ievels o f  attention - substates 
Because each operator requires only a subset of 

the total state and because these substates are often 
able to be partitioned, substates can be treated both 
conceptually and phydcally as separate entities. This 
leads to relatively simple and efficient data structure 
implementations. A further advantage is the small 
number of state variable~ L programmer has to con- 
tend with in a subs~ate. This makes learning and using 
a particular subszate relatively easy. 

5.2. Extensibility o f  DMS concept to time-shared sys- 
tems.  

The.re is nothing inherent in the DMS design con- 
cept which prevents its being used in a time shared 
environment. In fact we are in the process of building 
such a structure. The DMS corcept should be easily 
transferred to a time shared system such as for exam- 
ple the DECSYSTEM-IO or -20. The DMS master pro- 
gram, (i.e. 'BMON20'), should be a shared re-entrant 
program. Each user would create, upon first using 
BMON20, his own copy of the major state file in his 
own disk file region. Thus multiple users could use 
the system simultaneously. As operators were 
invoked by users which require additional substate 
files, these files would be created and that user's 
major state file modified t,_~ reflect this change. 

Searching for the external operator program files 

could then be done in a more extensive environment. 
For example, BMON20 might firs~ search the user's 
disk file structure for the special operator. If this 
search fails, it might then search a special DMS 
system-wide structure fi~r the operator. A useful 
extension to the command syntax might be to em- 
ploy an external operator from a specific user's disk 
area. This facility would let several users try an oper- 
ator under development before it is finally put into 
the DiMS f'de area for general use. 

As an added benefit of  a DMS, unnecessarily large 
programs modules consisting of a set of operators can 
be broken down into smaller modules and still be 
linked together in a reasonable way through the DMS. 
The effect of developing a werki,ng set of  these 
smaller modules reduces physical core demands 
although at the added expense of more paging and 
disk storage. The paging expense however can be held 
to reasonable limits by careful design of the modules. 

5.2.1. Substate #nplementation atld i:s hnplications 
Since it is impossible to completely define the 

major state file during the initial system design, a 
facility must be built into the system to allow the 
extension of the state during system development. 
This is done by setting aside a re~,i:,n 9f the state 
space itself which points to the extensions of the 
state resident on disk files. These extensions could 
consist of lists of 2-tuples: (substate file name, sub- 
state attribute). Part of  the attribute list would be the 
name of the author of th~ iew substate, in order to 
uniquely define it. Such an attribute could then be 
used to uniquely label the substate, enabling an oper- 
ator requiring the substate tt~ find it. Thus a user not 
requiring many substates would have a minimum 
number of auxiliary substate files and minimum over- 
head. Furthermore, each user would have a unique set 
of these substate files tailored to his particular use of 
the system. Overhead in accessing substates could be 
reduced by maintaining a demand paging region in 
the state for the current substate. 

Flexibility in substate structures allows for 'lean' 
but understandable major states. Passing the major 
state between DMS programs could be done either 
through disk files or through one of several interpro- 
cess communication mechanisms available for passing 
messages through core memory (e.g., in TOPS-IO sys- 
tems TMPCOR files, IPCF, pseudo teletypes). In 
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either case, the state must eventually be backed up 
pelmanently on disk files. An appropriate time to do 
this is when there is a 'significant' state change affect- 
ing long term operation, such as when a new substate 
is created or deleted. 

5.2.2. Requirements 1"or allocation o f  frame buffer 
resources 

As was discussed in section 3.1, certain types of 
picture memory 1/0 operations are quite often used. 
A similar situation occurs in attempting to perform 
picture processing in a time shared environment. 
However, further complications arise because of the 
allocation of precious frame buffer hardware 
resources. One solution is to restrict image processing 
on the system only to the user currently 'owning' 
the frame buffer resource. Clearly, this is an inade- 
quate solution. A better solution would be to require 
all frame buffer interaction to proceed through a 
'gateway' procedure which would (1) in the case of 
owning the frame buffer, use it directly, or (2) in the 
case of nat owning the frame buffer, simulate it as a 
set of  disk files. We believe that the latter solution 
would enable many more users to take advantage of 
the system without extravagant use of  system disk 
resources. This 'gateway" procedure could also be 
responsible for communicating with the hardware 
frame buffer's own CPU for performing offline image 
operations. 

This gateway program would appear to be similar 
to BMOMNI in BMON2 but with the various neces- 
sary extensions required for a time shared environ- 
ment. Among these would be the ability to ASSIGN 
and DEASSIGN (as in the DECSYSTEM-IO monitor 
command) a buffer memory handler and RTPP con- 
troller. Once assigned, a device could not be accessed 
by other users even though no program may be cur- 
rently using it (as is the case which occurs during 
chaining between DMS modules). Return of a device 
to the available pool may be made automatic or as an 
explicit courtesy to other users. 

In summary, the types of frame buffer I /0  for 
both the byte and word size pixels typically involved 
are: pixel; neighborhood; line; image; boundary list. 
The neighborhood I /0  should allow the user to define 
a neighborhood (typically n X n square) and have the 
system set up n-line buffers (and maintain them) to 
do the actual I/0. The latter should be transparent to 

the user. As an extension, a direction list neighbor- 
hood definition could be specified, as well as giving 
offsets relative to a center with the center specified 
as absolute coordinates. This would permit arbitrary 
neighborhood definition. The packing of  images in 
core should be convenient for rapid access for pixel/ 
line operations. This may necessitate maintaining two 
sets of line buffers in core, one packed and the other 
unpacked. 

If several non-refresh type displays are available to 
time sharing, it should be possible to use these to 
interrogate the picture memory. Although not as 
desirable for most applications as a refresh gray scale 
display, they would permit wider use of the system. 
This interaction can be facilitated by adding a new 
operator, SHOW, with the following syntax. 

display type - SHOW, BM, (display window) 
I 

The display window may be defaulted but is certainly 
a function of the type of display used and its gray 
scale simulation mechanism. 

Another useful change would be to allow the 
mixing of picture files with BMs in the command 
specification. For example, the following sequence 
can be replaced with a much simpler one if display of 
the data is +aot required. 

BM0 - READ, A.PIX 
BMI - READ, B.PIX 
BM2 - BMO, ADD, BMI 
C.PIX - WRITE, BM2 

may be replaced by: 

C.PIX - A.PIX, ADD, B.PIX 

5.2.3. Extensions to the syntax 
There are no inherent limitations to extending the 

syntax. However, the side effects of any extension 
should be carefully weighed. For example, the addi- 
tion of other data structures (such as lists) to the 
state would either have the effect of enlarging the 
state (bad for routine clmining) or of requiring their 
accession through a substate (less efficient during 
usage but probably preferable over the long term). 
Algol style control block-structure type syntax would 
be desirable but must be implemented in such a way 
so as to minimize the problems just discussed, possi- 
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bly using a control stack. Since the operators are not 
known until evaluation time, any control stack data 
structure might contain the actual string names a~ an 
efficient coding mechanism. 

Another useful extension would be to allocate a 
small number (possibly on t~le order of  3 0 - 5 0 )  user 
defined scalar variables to replace the Q-registers 
which are difficult to remember. The new syntax 
might to be preface the symbol with a '%" as in 
'%AREA'. A fixed region in the major state area 
could be allocated for the set of 2-tuples (%variable, 
scalar value) constituting the use~ variables. 

6. Conclusion 

We have detailed an instance of a distributed pic- 
ture processing monitor system. The advantages of a 
DMS for interactive use by non-programmer users are 
indicated. The further advantages of a distributed 
monitor system in both adding and maintaining large 
numbers of large new operators are enumerated. The 
extension o, ~ the distributed monitor system concept 
to a time sharing environment in the context of a 
large main frame is outlined. 
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SETFSREL - position the window relative from 
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FINDFS, - find the minimum enclosing window 
in a BM 
STDBM - set the standard BM positions on the 
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the LCS 
SHOWMOVIE, - show a specified sequence of 
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GELMVI, - show two 512 X 512 images with 
camera control 
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A p p e n d i x  A - Lists  o f  B M O N 2  opera tors  b y  group  

The set of BMON2 operators are most easily 
understood if they are functionally grouped. In the 
list, those followed by a ' , '  are external operators 
while the others are built into BMON2 proper. The 
function of a given i:~dividual operator is often appar- 
ent from its name. Detailed description of its opera- 
tion is found in the user's manual [ 10]. Those opera- 
tors whose aigorit|uns were obtained from specific 
papers are referenced as such. 

. Image input/output operators: 
WRITE* - write BM(s) to OS8 devices 
READ, - read BM(s) from OS8 devices 
WINDMP, - print the decimal values of the BM 
window 

MAGIO* [71 - magtape file utility 
PIXMTA, - BM(s) data acquisition to magtape 
REVIEW, - magtape image files to BM(s) 
BNDPRINT, [ 15 ] - boundary analysis and dis- 
play 
CAMERA, - automatic camera control 

3. Control desk: 

CMDKEYS - print command key assignments 
SAVCMD - save current command key assign- 
meat in a file 

RSTCMD - ~estore command key assignment 
from a file 
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4. State initialization and state inquiry: 
I N I T  - initialize the BMON2 state or substates 

E X I T  - exit BMON2 back to OS8 saving the state 
PARAMETERS - print state or substate parame- 
ters 
SETGENSYM - define the file name generator 
LOADQR - load a scalar into a Q-register 
EVAL - do scalar arithmetic 
HELP,  - search a document file for command 
information 

OPENFILE - start spooling BMON2 output  
CLOSEFILE - stop spooling BMON2 output  
MOVSTATE,  - move the microscope stepping 
motors by value 

5. Auxilliary programming: 

BATCH -- submit an OS8 batch job from BMON2 
NOBATCH - turn off OS8 batch if it is on 
APPLY,.: - create a batch job from a macro file 
and parameters 
SETIO f -- execute the PDP8e I / 0  instruction with 
parametez 

6. Synthetic image operators: 
COLOR - assign a buffer memory a specified gray 
value 
ZERO -- zero the buffer memory 
GRAYBAR -- fill a BM with a graybar (i 6 step log 

or 256) 

T E X T  -- draw a teletype specified text message in 

a BM 
GRID - draw a grid of size N X Nco lo r  G in a BM 

WHITENOISE - color a BM with white noise 

7. Unary image point operators: 

COPY - copy a BM into 

COMPLEMENT - complement a BM 

C O N T R A S T  - contrast stretch a BM 

DEFCONTRAST,  - draw a contrast ft~.nction 
with the Graphpen 

F N C O N T R A S T ,  - apply the contrast function to 
a BM 

SCALE - scale a BM using a linear transformation 
SLICE - threshold slice a BM 
SHIFT - translate a BM in (x. y )  
ROTATE,  - rotate a BM a specified angle 

. 

. 

Neighborhood unary image operators: 

ZOOM, - magnify a window in BM(s) by repeat- 
ing pixels 

AVG8 - 8-neighbor average a BM window 
AVGN* - N × N average a BM window 
MIDPOINT, -- 3 X 3 midpoint filter a BM window 
MEDIAN, - 3 X 3 median filter a BM window 
LAPLACIAN - 3 X 3 Laplacian filter a BM win- 
dow 

GRAD4 [27] - 4-neighbor gradient of  a BM win- 
dow 

EDGE [27] - 3 × 3 edge filter a BM window 
GRADN,  - N × N neighborhood gradient a 

BM window 

MTV,  [23] - 3 × 3 MTV filter a BM window 
VARIANCE* - 3 X 3 variance filter a BM window 
GRAD8,  - 8-neighbor gradient of a BM window 

F I L T E R ,  - direction list filter a BM window 

FILLPINHOLES - fill pin holes in a BM window 
CIRCLE - copy a circular BM window 
RECTANGLE -- copy a rectangular BM window 

PROPAGATE* - propagate a BM window 
PROP2,  - propagate a BM window 
RUNFILTER* - run length filter a BM window 
NGHSE,  - gray scale shrink/expand a BM win- 
dow 
NOTCH* [ 19] - notch filter a BM window 
NCHSI2 ,  [19] - notch filter a 512 X 512 BM 

window 
FILGAP,  - gap fill a BM window 

Point binary image operators: 
ADD - pixel by pixel add two BM windows 
SUB - pixel by pixel subtract two BM windows 
MUL - pixel by pixel multiply two BM windows 
DIV - pixel by pixel divide two BM windows 
AND - pixel by pixel bit-AND two BM windows 

OR - pixel by pixel inclusive bit-OR two BM win- 

dows 
MAX - pixel by pixel maximum of  two BM win- 

dows 
MIN - pixel by pixel minimum c f  two BM win- 

dows 
DIFF - pixel by pixel absolute difference of  two 

BM windows 
ISOLATE [ 1 6 ] ,  - region isolation of  connected 

component  image and gray scale image 
SHADE,  [24] - shade correct a BM window 
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I0. St,~tistical display operators: 
HIST --compute the gray scale distribution of a 
BM window 
SilOWHlSTOGRAM - display gray scale distribu- 
tion in a BM 
SMOOTHlSTOGRAM* [261 - smooth a gray 
scale distribution 
PLOT2D, - plot two BM windows in a third BM 

I 1. Line drawing operators: 
GRAPHPEN - edit a BM with a Graphpen 
EXTRACT, - extract BM measurements with 
drawn boundaries 
DRW512, - edit a 5 i 2 X 512 BM image with 
Graphpen 
BDEDIT, [25 ] - edit a boundary data file over- 
hying a BM image 
BTT* [12] - compute the boundary trace trans- 
form in a BM 

12. Segmentation operators: 
SEGBND, [! 1,22] .... segment a BM into a set of 
boundaries and a connected component (CC) BM 
image 

SEG2PS, [22] - segment a BM window into a CC 
BM image 
SEG512, [18,22] - segment a 512 × 5!2 BM 
window into a CC image 
RMVBLOB, [14] -- remove compact blobs less 
than size N 
DYNBND, - dynamic boundary follower 

13. Scalar measurement operators: 
AREA -- compute area of a BM window 
DENSITY - o~mpute the density of a BM window 
P E R I M E T E R  compute tile perimeter of objects 
above threshold in a BM window 
SUIVIDIFF - compute the sum of the differences 
of two BMs 

COMASS, - compute tile center of mass of the 
BM window data 

PTILE, [22] - compute the N'th percentile of 
current histogram 

TOTDENSITY, [ 18] - c o m p u t e  the total density 
and background of 512 X 512 image 

14. Quantimet function operators: 

QDATA - acquire data from the QMT function 
computer hardware 

LOADTHRESHOLDS - load the detector module 
threshold values 

15. Texture measurement operators: 
RLTEXTURE, [5] - c o m p u t e  run length texture 
features of BM window 
JGSTXTURE, [21 ] - compute joint gray scale 
texture features of  a BM window 
JGSPLOT, [21 ] - compute and display joint gray 
scale texture features of  BM window 

16 .3 -Dimens iona l  reconstruction operators: 
RECONSTRUCT, - recons t ruc t  projection from 
serial sections 

17. linage comparison operators: 
FLICKER, [ 17] - flicker analysis of 2-dimen- 
sional gel images 

SCANSPOT, [ 18] - canonical spot data manage- 
merit system 

MAKLST, [18] - image accession number data 
management system 

CMPGEL, [18] - g e l  spot list comparison system 
MAKCMP, - generate batch jobs for CMPGEL 
use 

Append ix  B - Sample  BMON2 run 

The following batch job will acquire and prepro- 
cess a number of nucleic acid molecules from elect'con 
micrographs of film. The result is a set of boundary 
data files suitable as input to a molecule analysis pro- 
g r a m  [19,25] running on a DECI0. 

S JOB MOLECULES.BI - ACQUIRE, PREPROCESS 
NUCLEIC ACID MOLECULES 

.R BMON2 

/1. Initialize system and unpost any images currently 
posted 

*INIT/A 
/ 
/2. Set frame size to 512 X 512 
*SETFSXY, 1,1,512,512 
/ 

$MSG - POSITION THE SAMPLE FRAME OF 
IMAGE TO BE ACQUIRED 

/3. Position BMs at frame cunently set interactively 
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,INIT/B 
/ 
/4. Acquire a 512 X 512 image at the current window 
/and average it to a 256 × 256 
,BM0-SMPGET/A 
/ 
/5. Complement the image into itself 
• BM0-COMPLEMENT, BMO 
/ 
/6. Low pass filter the image to remove most of the 

shading 
/error using a 32 X 32 window in a notch filter and 
/compute the lowest background value automatically 
,BM3-NOTCH,32/A 
/ 
/7. Compute the gray scale distribution of the image 

and 
/display the distribution in BMI 
*BMI-HISTOGRAM,BM3 
/ 
/8. Compute the 75'th percentile of density values of 

the 
/histogram which will then be used to generate a 

noisy thresholded 
/image of the molecules 
,PTILE,75 
/Note: The gray value corresponding to the 75'th 

percentile 
/is stored in QRC 
/ 
/9. Slice the image in BM3 back into BM0 at thresh- 

old QRC 
/through 255 (black) 
• BMO-SLICE, BM3, QRC 
/ 
/10. Do gross image editing. Fill major gaps if 

required 
*BMO-GRAPHPEN 
/ 
/11. Remove blobs <20 pixels in radius in 2 passes 
/Leave larger blobs intact 
• BM 2-  RMVBLOBS,BM0,10 
*BM0-COPY,BM2 
• BM2-RMVBLOBS,BM0,10 
/ 
/12. Segment the image into separate molecules 

b,3undaries 
/First set up the boundary data file name generator to 

/generate the boundary data file (BDF) name 
BD0001 

/Size objects by perimeter in the range of 150:2000 
pixels 

*SETGENSYM,BD,0 
• BMI -SEGBND,BM2,150,2000/T/L/N/B/1 
/ 
/13. Edit a single BDF list of boundaries (removing 

hairs 
/and marking endpoints) into a set of BDFs 

BSO001 .DA, 
/BS0002.DA, etc. 
/Each time a boundary for the BD0001.DA BDF is 

edited, 
/it is overlayed in black in BM0 on top of a fresh 

copy of 
/the gray scale original image in BM2 
• BM0-BDEDIT,BD0001 .DA,BS,0001 ,BM2 
/Note: The endproduct is a set of marked molecule 

boundaries on 
/the disk 
/ 
/14. Dump the final set of boundaries on magtape 

and then 
/delete them from the disk 
SMSG - MOUNT MAGTAPE: REWIND, PUT 

ON-LINE, RING IN, ON UNIT 0 
• MTAO :-MAG 10,BS????.DA/D, BMON2 
SEND MOLECULES.BI 
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